Problem Solving: Agent Architectures

• 2 extremes of agent architecture:

1. Purely reactive
 – Stimulus-response
 – No thought given to resulting action
 – Such approaches can be implemented via
 (a) Rules
 (b) Look-up tables
 (c) Physically hard-wired

2. Rational agent
 – Agent is able to reason about world, possible actions and their results, ...
 – Requires internal representation of world, actions, ...
 – As discussed earlier, this approach most flexible
 – Rational agents are problem solvers
 – Generally goal-driven (but may have reactive components)
Problem Solving: Requirements

- AI concerned with solving problems
- Representing and reasoning about problems requires
 - Knowledge representation (KR)
 * This is the problem of representing information
 * In AI, this knowledge is generally
 - Voluminous
 - Hard to characterize accurately
 - Dynamic
 * KR schemes should
 - Capture generalizations
 - Be understandable by people
 - Be easily modified
 - Apply to many situations
 - Make access to knowledge efficient
 * The nth extreme is to represent all possible situations and associated actions explicitly
 - Very inflexible - designer must account for every eventuality
 - Cannot deal with unexpected situations
 - Storage requirements - except for smallest domains - not practical
 - This is NOT a reactive agent
 - Abstraction
 * Must be able to identify aspects of problem crucial to its solution, while ignoring those that are irrelevant
 * This tactic reduces amount of storage and processing required
 - Search
 * Problem solving can be thought of as a search
 * Given an agent with a set of sensors and effectors in an environment
 - Sensors inform the agent of its environment
 - Effectors change the state of the world
 - Problem solving can be described as a search through a set of such states
 - Solving the problem consists of finding a set of actions that will produce a state of the environment in which the solution is achieved
Problem Solving: Requirements (2)

- Planning
 * For intelligent agents, problem solving is not a random task
 * The agent usually wants to be moderately sure of achieving a goal with a reasonable amount of effort and success
 * These issues can be addressed by planning a sequence of actions before carrying them out

• The catch-22
 - AI systems need lots of knowledge
 - As knowledge grows, becomes harder to manage
 - To facilitate efficient knowledge management, additional knowledge required
Problem Solving: Classic AI Problems

1. Water jug problem
 Given a 3 gallon jug, a 4 gallon jug, and an infinite water source, Fill the 4 gallon jug with 2 gallons

2. 8 puzzle
 Given an 8 puzzle, arrange the tiles in some specified order
 \[
 \begin{array}{cc}
 4 & 7 \\
 5 & 1 & 3 \\
 6 & 2 & 8 \\
 \end{array}
 \rightarrow
 \begin{array}{cc}
 1 & 2 & 3 \\
 8 & 4 \\
 7 & 6 & 5 \\
 \end{array}
 \]

3. 8 queens
 Given a chess board and 8 queens, arrange the queens - one per row - so that none is under attack

4. Blocks world
 Given a set of blocks, a surface, and a robot arm, arrange the blocks in a specified configuration

5. Missionaries and cannibals (Hens and foxes)
 3 missionaries and 3 cannibals are on one side of a river. There is a single canoe that can hold at most 2 people. All want to get to the other side. The missionaries can never be outnumbered because the cannibals will be able to overpower them and eat them. Get all 6 safely across the river.
Problem Solving: Classic AI Problems (2)

6. The monkey and the bananas.
A bunch of bananas hang out of reach of the monkey, who is hungry. With the monkey are tools (depending on the version, one or more boxes, a stick, ...) What steps can the monkey take to get the bananas?

7. Cryptarithmatic
Given an encoding of digits as characters, decode the problem

\[
\begin{array}{c c c c c}
\text{forty} & 2 & 9 & 7 & 8 & 6 \\
\text{+ ten} & & + & 8 & 5 & 0 \\
\text{+ ten} & & + & 8 & 5 & 0 \\
\hline
\text{sixty} & 3 & 1 & 4 & 8 & 6
\end{array}
\]
Problem Specification: Problem Components

• States
 – Descriptions of the world at specific times
 – State changes as a result of agent intervention or environmental events

• Initial state (or states)
 – State at beginning of a problem
 – Single state problem has 1 initial state
 – Multiple state problem has several initial states

• Operators (actions): Functions mapping state → state
 – For multiple state problems, maps sets of states → sets of states
 – State space: Set of all states reachable from initial state(s) given a set of operators
 – Path: Sequence of actions that move from one state to another
 – (Nilsson calls generic representation of action a schema and instance of schema an operator)

• Goal test: Determines if goal reached
 – Can be explicit set of states
 – Or an abstract condition to be tested

• Path cost function (g): Measures cost of going from one state to another
 – Determined by:
 1. Fuel or energy expended going from state to state
 2. Danger ”
 3. Distance ”
 4. Etc.
 – Is additive
 – If no info provided, cost is 1 between states
Problem Specification: Problem Components (2)

• Search cost
 – Measured wrt time and memory
 – Can tradeoff
 * Time for memory
 * Time for non-optimal path

• Problem defined by 4-tuple
 < initial state, operator set, goal test, cost function >
General steps taken in problem solving:

1. Goal formulation
 - Id goal
 - Goal = set of states, possibly a singleton

2. Problem formulation
 - Id of means of solving problem
 - Primary concerns are
 - Determining what states to consider
 - What actions are applicable
 - Process can be thought of as identifying rules for solving the problem

3. Search
 - Find sequence of actions that will transform start state to goal state
 - 2 general approaches:
 (a) No specific knowledge about the problem
 Choose an action at random and pick up in new state
 Reflexive agent
 This is uninforme search
 (b) Have additional knowledge
 Can use this knowledge to make a plan of action
 Goal-based/intelligent agent
 This is informed, or heuristic search

4. Execute actions
 - Solution is sequence of actions that transform initial state to goal state
 - Note: Even with planning, planned sequence may not be actual sequence
 Unforeseen events may necessitate alteration of plan

5. Execute actions
Problem Specification: Problem Solving Overview (2)

General Algorithm for problem-solving agent:

```plaintext
function simpleProblemSolvingAgent (p) returns action
    input:  a percept p
    static: action sequence s, initially empty
    state
    goal g (initially null)
    problem

    {
        if (empty (s) {
            g <- formulateGoal (state)
            problem <- formulateProblem (state, g)
            s <- search (problem)
        }
        action <- recommendNextAction (s, state)
        return action
    }
```
Problem Specification: States

- Must determine how to represent states
- *Iconic* representation is a symbolic representation
- *Feature-based* representation is descriptive
- Choice of state influences effort in finding solution
Problem Specification: Rules

- Several approaches can be taken to determine when an action is applicable
 - Based purely on sensory input
 * Inputs represented as binary string
 * String represents AND of specific stimuli
 * Action triggered by a specific string
 * Corresponds to a purely reactive agent
 - If-then rules
 * While bit-string approach can be considered if-then rule, rules usually more abstract
 * Rules represented in terms of features of the environment and internal states of the agent
 * Rules can be represented by
 1. Pattern → pattern
 2. Pattern → code
 3. Block of code
 * Left-hand side represents a state of the world
 * Right-hand side represents action to transform world
 * Corresponds to intelligent agent

- Factors to consider in writing rules
 - Specific v general left-hand sides
 - Does rule produce motion toward goal?
 - Special case rules: problem specific
Problem Specification: Environments

- Environment is context in which agent functions
- Affects problem formulation
- Types of environments:
 1. Accessible v inaccessible:
 Agent can perceive complete state
 2. Deterministic v non-deterministic:
 Next state based solely on agent’s actions
 3. Episodic v non-episodic:
 Episodes independent
 4. Static v dynamic:
 Environmental changes effected only by agent
 5. Discrete v continuous:
 Actions and percepts are distinct
- Some examples:

<table>
<thead>
<tr>
<th>Environment</th>
<th>Accessible</th>
<th>Deterministic</th>
<th>Episodic</th>
<th>Static</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 puzzle</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Chess</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Poker</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Driving</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Part-picking robot</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

- Real-world problems tend to be inaccessible, non-deterministic, non-episodic, dynamic, continuous
Problem Specification: Problem Types

1. Single state
 • Complete knowledge about current state and actions
 • Allows planning of actions before execution

2. Multiple state
 • Limited knowledge about current state or actions

 If incomplete state knowledge:
 – Do not know current state, so move from sets of states to sets of states
 – Success will be some goal state, but which one is unknown to agent

 If incomplete action knowledge:
 – Result of action unknown
 – From known state, can find path to goal state

3. Contingency problem
 • Incomplete knowledge about current state and actions
 • Cannot guarantee plan will succeed
 • Generally act, monitor results, and proceed from there

4. Exploration problem
 • No knowledge about current state and actions
Problem Specification: Problem Characteristics

1. Is problem decomposable?

2. Are actions recoverable?
 (a) Ignorable: Wasted actions ignored.
 (b) Recoverable: Wasted actions can be undone.
 (c) Irrecoverable: Once executed, must live with results.

3. Is world predictable?

4. Is solution absolute or relative?

5. Is solution a path or a state?