Chapter 8: Non-Comparison-Based Sorting - Lower Bounds

- All of the sorting algorithms seen so far (merge, insertion, quick) are based on comparing elements
 - Such sorts are called *comparison sorts*
- Comparison sorts can be represented by a *decision tree*
 - Decision tree is binary
 - Each node represents a comparison of two elements
 - Nodes are labeled $i:j$, indicating element i is being compared to element j, where $1 \leq i, j \leq n$, and n is the number of elements being sorted
 - Leaves represent the sorted results
 * Since sorting could result in any permutation of the n elements, there are $n!$ leaves in the tree representing all possible results
 - A sort of a specific input is represented as a path from the root of the tree to a leaf
 - Will consider only \leq comparisons
 - Given comparison $a_i \leq a_j$ at a node, the left branch represents $a_i \leq a_j$, the right branch $a_i > a_j$

- A sorting algorithm should be able to generate all permutations of the input
- Each leaf is *reachable* from the root as a result of a sort
- The length of a simple path from the root to a leaf represents the worst case number of comparisons required to perform a sort
- The upper bound on a tree’s height represents a lower bound for worst case sorting (by comparisons)
• Theorem (8.1): Any comparison sort requires $\Omega(n \lg n)$ comparisons in the worst case

 – Proof:
 * Consider a decision tree of height h with l reachable leaves that repre-
sents the results of a comparison sort of n elements
 * Each of the $n!$ permutations of the n elements appear at the leaf level, so $n! \leq l$
 * A binary tree of height h has $\leq 2^h$ leaves, so
 $$n! \leq l \leq 2^h$$
 * Taking the lg,
 $$h \geq \lg(n!) = n\lg n$$
 * Therefore, the number of comparisons $\in \Omega(n \lg n)$

• The import of this theorem is that no comparison sort can do better than $\in \Omega(n \lg n)$ in the worst case

 – However, sorts that are based on techniques other than comparisons do not have this limitation
Chapter 8: Non-Comparison-Based Sorting - Counting Sort

• Input is an array $A[1\ldots n]$ of elements $0 \leq x_i \leq k$

• Two auxiliary arrays are used:
 1. $C[0\ldots k]$ for intermediate processing
 2. $B[1\ldots n]$ for final results

• General technique:
 - Count how many values x_i there are in A, where $0 \leq x_i \leq k$
 - Maintain these counts in $C[i]$
 - C will then be adjusted so that the value in $C[i]$ represents the number of elements $\leq x_i$ in A
 - This will allow inserting x_i directly into its proper location in B

• Algorithm:

```java
Counting-Sort (A, B, k) {
  C = new array[0 .. k]
  for (i = 0 to k)
    C[i] = 0
  for (j = 1 to A.length)
    C[A[j]] = C[A[j]]++
  //C[i] now holds the number of elements whose value is i
  for (i = 1 to k)
    C[i] = C[i] + C[i - 1]
  //C[i] now holds number of elements $\leq i$
  for (j = A.length down to 1) {
    B[C[A[j]]] = A[j]
    C[A[j]]--
  }
}
```
Chapter 8: Non-Comparison-Based Sorting - Counting Sort (2)

• Analysis:
 – Lines 2 - 3: $\Theta(k)$
 – Lines 4 - 5: $\Theta(n)$
 – Lines 7 - 8: $\Theta(k)$
 – Lines 10 - 12: $\Theta(n)$
 – So $T(n) \in \Theta(k + n)$
 – In practice, $k \in O(n)$, so $T(n) \in \Theta(n)$

• This is a stable algorithm: Relative order of elements of the same value remains unchanged by the sort

• This sort is able to achieve better than $\Omega(n \log n)$ time because it does not rely on element comparisons
Chapter 8: Non-Comparison-Based Sorting - Radix Sort

• Input: Array \(A[1 \ldots n] \) of \(d \)-digit numbers

• Technique:
 – \(d \) passes will be made through the input
 – On each pass, the keys will be sorted \textit{based on a single digit}, working from least significant to most significant
 – The sort used must be stable

• Algorithm:

\[
\text{Radix-Sort} \ (A, d) \\
\quad \{
\quad \text{for (i = 1 to d)} \\
\quad \quad \text{call a stable sort to sort A based on digit i}
\quad \}
\]

• Lemma (8.3): Given \(n \) \(d \)-digit numbers in which the digits may assume up to \(k \) possible values, \textit{Radix-Sort} correctly sorts in \(\Theta(d(n + k)) \) time if the stable sort takes \(\Theta(n + k) \) time

 – Proof:
 * Run time depends on the sort
 * Lines 1 - 2 perform \(d \) iterations
 * If \textit{Counting Sort} is used as the stable sort, the sort \(\in \Theta(n + k) \)
 * Therefore \(T(n) \in \Theta(d(n + k)) \)

• Lemma (8.4): Given \(n \) \(b \)-bit numbers and any positive integer \(r \leq b \), \textit{Radix-Sort} correctly sorts in \(\Theta((b/r)(n + 2^r)) \) time if the stable sort takes \(\Theta(n + k) \) time for inputs in the range \([0, k]\)

 – Proof:
 * For \(r \leq b \), can consider each key as having \(d = \lfloor b/r \rfloor \) digits of \(r \) bits
 * Each digit is an integer in range \(0 \ldots 2^r - 1 \)
 * \textit{Counting Sort} can be used with \(k = 2^r \)
 * Each pass of the sort takes \(\Theta(n + k) = \Theta(n + 2^r) \) time
 * With \(d \) passes, have \(\Theta(d(n + 2^r)) = \Theta((b/r)(n + 2^r)) \)
Chapter 8: Non-Comparison-Based Sorting - Radix Sort (2)

- To make the algorithm most efficient, want the value of r that minimizes $(b/r)(n + 2^r)$
 - If $b < \lfloor \log n \rfloor$, then for any $r \leq b$, $(n + 2^r) = \Theta(n)$ which is asymptotically optimal
 - If $b \geq \lfloor \log n \rfloor$, then $r = \lfloor \log n \rfloor$ gives the best time within a constant factor
 * This gives run time of $\Theta((bn)/(\log n))$
 * As r increases, 2^r grows faster than r and run time $\in \Omega((bn)/(\log n))$
 * If r decreases $< \lfloor \log n \rfloor$, b/r increases and $n + 2^r$ remains $\Theta(n)$
Chapter 8: Non-Comparison-Based Sorting - Bucket Sort

- Input: Array $A[1 \ldots n]$ of elements in range $[0, 1)$
 - Elements assumed to be uniformly and independently distributed over this range

- An auxiliary array is used:
 - $B[0 \ldots n - 1]$
 - B is an array of linked lists into which elements of A are inserted
 - Each $B[i]$ is called a *bucket*
 - B represents n equally-spaced intervals over $[0, 1)$
 - In the ideal case, only one element from A will occupy each bucket

- General technique:
 - Put elements from A into their appropriate buckets
 - Sort the individual buckets
 - Concatenate the buckets

- Algorithm:

```java
Bucket-Sort (A) {
1     n = A.length
2     B = new array[0 .. n - 1]
3     for (i = 0 to n - 1)
4         B[i] = 0
5     for (i = 1 to n)
6         insert A[i] into B[floor(n * A[i])]
7     for (i = 0 to n - 1)
8         Insertion-Sort(B[i])
9     concatenate B[0], B[1], ..., B[n - 1]
}
```
• Proof of correctness:
 – Since \(\lfloor nA[i] \rfloor \leq \lfloor nA[j] \rfloor \), \(A[i] \) goes in the same bucket as \(A[j] \) or in a lower one
 – If the same bucket, sorting (line 8) will put them in proper order
 – If in different buckets, concatenation (line 9) will put them in proper order

• Analysis:
 – Loops in lines 3 - 6 \(\in \mathcal{O}(n) \)
 – Loop lines 7 - 8
 * Let \(n_i \) be a random variable representing the number of keys in \(B[i] \)
 * Insertion sort \(\in \mathcal{O}(n^2) \)
 * Therefore
 \[
 T(n) = \Theta(n) + \sum_{i=0}^{n-1} \mathcal{O}(n_i^2)
 \]
 – For the average case
 \[
 E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} \mathcal{O}(n_i^2)\right]
 \]
 \[
 = \Theta(n) + \sum_{i=0}^{n-1} E[\mathcal{O}(n_i^2)]
 \]
 \[
 = \Theta(n) + \sum_{i=0}^{n-1} \mathcal{O}(E[n_i^2])
 \]
 \[
 = \Theta(n) + \sum_{i=0}^{n-1} \mathcal{O}(2 - \frac{1}{n})
 \]
 * \(E[n_i^2] = 2 - \frac{1}{n} \) for \(i = 0, 1, \ldots, n - 1 \)
Chapter 8: Non-Comparison-Based Sorting - Bucket Sort (3)

* Proof:
 · Let $X_{ij} = I \{A[j] \text{ falls in bucket } i\}, 0 \leq i \leq n-1, 1 \leq j \leq n$
 · Then $n_i = \sum_{j=1}^{n} X_{ij}$
 · Substituting in the above

 $E[n_i^2] = E \left[\left(\sum_{j=1}^{n} (X_{ij}) \right)^2 \right]$

 $= E \left[\sum_{j=1}^{n} \sum_{k=1}^{n} (X_{ij}X_{ik}) \right]$

 $= E \left[\sum_{k=1}^{n} X_{ij}^2 + \sum_{j=1}^{n} \sum_{k=1}^{n} (X_{ij}X_{ik}) \right]$

 $= \sum_{k=1}^{n} E[X_{ij}^2] + \sum_{j=1}^{n} \sum_{k=1}^{n} E[X_{ij}X_{ik}]$

 · $X_{ij} = 1$ with probability $1/n$, so

 $E[X_{ij}^2] = 1^2 \cdot \frac{1}{n} + 0^2 \cdot \left(1 - \frac{1}{n}\right) = \frac{1}{n}$

 · When $k \neq j$, X_{ij} and X_{ik} are independent, so

 $E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}] = \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n^2}$

 · Substituting in the above

 $E[n_i^2] = \sum_{j=1}^{n} \frac{1}{n} + \sum_{k=1}^{n} \frac{1}{n^2}$

 $= n \cdot \frac{1}{n} + n(n-1) \cdot \frac{1}{n^2}$

 $= 1 + \frac{n-1}{n}$

 $= 2 - \frac{1}{n}$

 * Therefore

 $T_{avg}(n) = \Theta(n) + n \cdot O \left(2 - \frac{1}{n}\right) = \Theta(n)$