Decidability: Reduction Proofs

• Basic technique for proving a language is (semi)decidable is reduction

• Based on the following principle:

 – Have problem \(A \) that needs to be solved

 – If there exists a problem \(B \), such that \(B \)’s solution will enable the solution to \(A \), you can solve \(A \) by
 1. Solving \(B \)
 2. Using \(B \)’s solution to solve \(A \)

 – I.e., \(B \Rightarrow A \)

 – The problem of solving \(A \) has been reduced to solving \(B \)

 – Note that failure to solve \(B \) does not preclude finding a solution for \(A \)

 * There may be some \(C \) whose solution will enable a solution to \(A \)

• Reduction proofs use proof by contradiction

 – Assume you want to show that \(X \) has no solution

 – Suppose that \(Y \) reduces to \(X \)

 * Then, \((Y \text{ reduces to } X) \land X \Rightarrow Y\)

 – If \(Y \) is chosen with the knowledge that \(Y \) cannot be solved, must conclude that

 * \(X \) has no solution either

• For our purposes, ”having a solution” means that a language is (semi)decidable

• Formally

 – A reduction \(R \) from \(L_1 \) to \(L_2 \) consists of one or more TMs such that
 1. If there is a TM \(\text{Oracle} \) that (semi)decides \(L_2 \), then
 2. The TMs of \(R \) can be combined with \(\text{Oracle} \) to (semi)decide \(L_1 \)

 – \(L_1 \leq L_2 \) denotes that \(L_1 \) is reducible to \(L_2 \)

 – Reduction often referred to as Turing reducibility, since it is defined in terms of TMs
• Steps of a reduction proof

Given language L_2, where want to show that $L_2 \notin D$ (or SD)

1. Choose language L_1 such that

 $L_1 \leq L_2$

 $L_1 \notin D$ (or SD)

2. Define the reduction R from L_1 to L_2

 – Assume Oracle exists for deciding L_2

 – Describe the composition C of R and Oracle

 – C will be used to decide L_1

3. Demonstrate that C does, in fact, decide L_1

 – Must show that

 (a) R can be implemented as one or more TMs

 (b) C is correct:

 i. If $x \in L_1 \Rightarrow$, $C(x)$ does accept

 ii. If $x \notin L_1 \Rightarrow$, $C(x)$ does not accept

4. Conclude that cannot (semi)decide L_2, since cannot (semi)decide L_1, and hence proposed Oracle cannot exist
Decidability: Reduction Proofs (3)

• Common error is to go in the wrong direction
 – Instead of reducing from language known to be undecidable to the one in question, mistakenly reduce from the one in question to the one known to be undecidable
 – E.g.,
 Want to show A is undecidable and know that B is undecidable
 * Proper way:
 1. Show that B reduces to A (i.e., deciding A means we can decide B), and
 2. Assume there is a procedure for deciding A
 3. Show that this procedure allows us to decide B
 · But that would contradict what we already know about B
 4. Conclude that the hypothesized procedure for deciding A cannot exist
 * Incorrect approach: Reduce from A to B (i.e., deciding B means we can decide A),
 · The situation ultimately says nothing about A’s decidability
 · We know that B cannot be decided, but maybe there is a C that will allow us to decide A

• Reduction often accomplished by mapping instances of A to instances of B
 – Then can use decision procedure of B on transformed instances of A

• Given alphabet Σ
 – L_1 is mapping reducible to L_2, denoted $L_1 \leq_m L_2$, iff there is some computable function f such that
 \[
 \forall x \in \Sigma^* (x \in L_1 \iff f(x) \in L_2)
 \]
 – Allows you to ask ”Is $f(x)$ in L_2” rather than ”Is x in L_1”
 – If f can be computed by TM R, then R is a mapping reduction from L_1 to L_2
 – If $L_1 \leq_M L_2$, and there is a TM Oracle that decides L_2, then
 * Composition $C(x) = Oracle(R(x))$ will decide L_1
Decidability: Proofs - Theorem 21.1

• Statement:

Language \(H_\epsilon = \{ < M > : \text{TM } M \text{ halts on } \epsilon \} \in SD \), but \(\notin D \)

• Proof \((H_\epsilon \in SD)\):
 - Construct \(T(<M>) \) as follows:
 1. Run \(M \) on \(\epsilon \)
 2. Accept
 - If \(M \) halts on \(\epsilon \), \(T \) accepts \(M \), and therefore \(T \) semidecides \(M \)

• Proof \((H_\epsilon \notin D)\): Let \(R \) be mapping reduction from \(H \) to \(H_\epsilon \)
 - Construct \(R(<M,w>) \) as follows
 1. Construct encoding \(<M#> \) of TM \(M#(x) \) that, on input \(x \),
 * Erases the tape
 * Writes \(w \) onto the tape
 * Runs \(M \) on \(w \)
 2. Return \(<M#> \)
 - Construction details
 1. Write code to erase tape

2. for (each \(c \) in \(w \)) {
 write \(c \);
 if (\(c \) not last character of \(w \))
 write \(R \);
}
3. write \(L\square M \)
Decidability: Proofs - Theorem 21.1 (2)

– Correctness of C
 * Suppose $Oracle$ for deciding H_ϵ exists
 * $M#$ ignores its own input and halts on everything or nothing
 1. If M halts on w, $M#$ halts
 2. If M does not halt on w, $M#$ does not halt
 * If $<M,w> \in H$, M halts on w and $M#$ halts on everything (including ϵ)

 $Oracle(<M#>)$ does accept
 * If $<M,w> \notin H$, M does not halt on w and $M#$ halts on nothing

 $Oracle(<M#>)$ does not accept
– But then $Oracle(R(<M,w>))$ decides H
 * But since $H \notin D$, $Oracle$ cannot exist, and therefore $H_\epsilon \notin D$
Decidability: Proofs - Points to Emphasize

- Decidability reduction proof involves two kinds of languages
 1. Encodings of TMs
 2. Language that a TM accepts
 - This is input as a string to TM that accepts or rejects the string

- Proof involves five types of TMs
 1. Oracle - the hypothesized decision TM
 2. R
 3. C - the composition $Oracle(R)$
 4. $M\#$ - whose encoding is the argument to Oracle
 5. M - TM of interest, whose encoding is argument to R
Decidability: Proofs - Theorem 21.2

• Statement:

Language $H_{any} =$

\{ $< M >$: There exists at least one string on which TM M halts\}

$\in SD$, but $\notin D$

• Proof ($H_{any} \in SD$):

– Construct $T(< M >)$ as follows
1. Use dovetailing to generate strings in Σ^*
2. Run M on these strings in parallel, one step at a time
3. If M accepts any string, T accepts
– Since T halts and accepts whenever M does, T semidecides H_{any}

• Proof ($H_{any} \notin D$): Let R be mapping reduction from H to H_{any}

– Construct $R(< M, w >)$ as follows
1. Construct encoding $< M# >$ of TM $M#(x)$ that, on input x,
 (a) If $x == w$, runs M on w
 (b) Loops otherwise
2. Return $< M# >$
– Correctness of C

 * Assume Oracle for deciding H_{any} exists
 * $M#$ can only halt on string w
 1. If $< M, w >\in H$, M halts on w, and $M#$ halts
 Oracle($< M# >$) does accept
 2. If $< M, w >\notin H$, M does not halt on w, and $M#$ does not halt
 Oracle($< M# >$) does not accept
– Oracle($R(< M, w >)$) decides H

 * But since $H \notin D$, Oracle cannot exist, and therefore $H_{any} \notin D$
• Alternative proof ($H_{\text{any}} \notin D$):

 - Construct mapping reduction $R(<M,w>)$ from H to H_{any} as follows
 1. Construct encoding $<M\#>$ of TM $M\#(x)$ that, on input x,
 (a) Erases tape
 (b) Writes w on tape
 (c) Runs M on w
 2. Return $<M\#>$

 - Correctness of C
 * Assume $Oracle$ for deciding H_{any} exists
 * $M\#$ can only halt on string w
 1. If $<M,w> \in H$, M halts on w, $M\#$ halts on everything
 - $Oracle(<M\#>)$ does accept
 2. If $<M,w> \notin H$, M does not halt on w, $M\#$ does not halt
 - $Oracle(<M\#>)$ does not accept

 - $Oracle(R(<M,w>))$ decides H
 * But since $H \notin D$, $Oracle$ cannot exist, and therefore $H_{\text{any}} \notin D$
Decidability: Proofs - Theorem 21.3

• Statement:
 Language \(H_{all} = \{<M> : \text{TM } M \text{ halts on } \Sigma^* \} \notin D \)

• Proof: Let \(R \) be mapping reduction from \(H_e \) to \(H_{all} \)
 - Construct \(R(<M>) \) as follows
 1. Construct encoding \(<M\#>\) of TM \(M\#(x) \) that, on input \(x \),
 * Erases the tape
 * Runs \(M \)
 2. Return \(<M\#>\)
 - Correctness of \(C \)
 * Assume \(Oracle \) for deciding \(H_{all} \) exists
 * \(C = Oracle(R(<M>)) \) exists and is correct
 1. If \(<M> \in H_e, M \text{ halts on } \epsilon \text{ and } M\# \text{ halts on everything} \)
 \(Oracle(<M\#>) \) does accept
 2. If \(<M> \notin H_e, M \text{ does not halt on } \epsilon \text{ and } M\# \text{ halts on nothing} \)
 \(Oracle(<M\#>) \) does not accept
 - Then \(Oracle(R(<M,w>)) \) decides \(H \)
 * But since \(H_e \notin D \), \(Oracle \) cannot exist, and therefore \(H_{all} \notin D \)
Decidability: Proofs - Theorem 21.4

• Statement:

Language $A = \{<M, w>: M$ is a TM and $w \in L(M)\} \notin D$

• Discussion:

– Would be easy to define $R(<M, w>)$ as simply return $<M, w>$;
– But it will not work
 * If $<M, w> \in H$, then M halts on w
 · If it halts and accepts, $Oracle(<M, w>)$ will also accept
 · If it halts and does not accept, $Oracle(<M, w>)$ will also not accept
 * Therefore, cannot guarantee that $Oracle(<M, w>)$ only accepts whenever M halts on w

• Proof: Let R be mapping reduction from H to A

 – Construct $R(<M, w>)$ as follows
 1. Construct encoding $<M\#>$ of TM $M\#(x)$ that, on input x,
 * Erases the tape
 * Writes w to the tape
 * Runs M on w
 * Accepts
 2. Return $<M\#, w>$

 – Correctness of C
 * Assume $Oracle$ for deciding A exists
 * $C = Oracle(R(<M, w>))$ exists and is correct
 1. If $<M, w> \in H$, M halts on w and $M\#$ accepts everything
 $Oracle(<M\#, w>)$ does accept
 2. If $<M, w> \notin H$, M does not halt on anything and $M\#$ halts on nothing
 $Oracle(<M\#, w>)$ does not accept
 – Then $Oracle(R(<M, w>))$ decides H
 * But since $H \notin D$, $Oracle$ cannot exist, and therefore $A \notin D$
Decidability: Proofs - Theorems 21.5, 21.6, 21.7

- Theorem 21.5
 - Statement:
 Language $A_{\epsilon} = \{ < M > : \text{TM } M \text{ halts on } \epsilon \} \notin D$
 - Proof: Similar to proof of Theorem 21.1

- Theorem 21.6
 - Statement:
 Language $A_{\text{any}} = \{ < M > : \text{TM } M \text{ accepts at least one string} \} \notin D$
 - Proof: Similar to proof of Theorem 21.2

- Theorem 21.7
 - Statement:
 Language $A_{\text{all}} = \{ < M > : \text{TM } M \text{ accepts every string in } \Sigma^* \} \notin D$
 - Proof: Similar to proof of Theorem 21.3
Decidability: Proofs - Theorem 21.8

- **Statement:**

 Language $EqTMs =$

 $\{< M_a, M_b >: M_a, M_b$ are TMs and $L(M_a) = L(M_b)\} \notin D$

- **Proof:** Let R be mapping reduction from A_{all} to $EqTMs$

 - Construct $R(< M >)$ as follows

 1. Construct encoding $< M# >$ of TM $M#(x)$ that, on input x,

 * Accepts
 2. Return $< M, M# >$

 - Correctness of C

 * Assume $Oracle$ for deciding $EqTMs$ exists

 * $C = Oracle(R(< M >))$ exists and is correct

 1. If $< M > \in A_{all}$, $L(M) = L(M#)$

 $Oracle(< M, M# >)$ does accept
 2. If $< M > \notin A_{all}$, $L(M) \neq L(M#)$

 $Oracle(< M, M# >)$ does not accept

 - Then $Oracle(R(< M, w >))$ decides A_{all}

 * But since $A_{all} \notin D$, $Oracle$ cannot exist, and therefore $EqTMs \notin D$
Decidability: Proofs - Theorem 21.9

• Statement:

Language $L_2 = \{<M>: \text{TM } M \text{ accepts no even length strings}\} \notin D$

• Discussion:

 – If use mapping reduction from H to L_2 as usual
 * Oracle will produce inverse result desired
 – Solution is to use a second TM that inverts Oracle’s output

• Proof: Let R be mapping reduction from H to L_2

 – Construct $R(<M,w>)$ as follows
 1. Construct encoding $<M\#>$ of TM $M\#(x)$ that, on input x,
 * Erases the tape
 * Writes w to the tape
 * Runs M on w
 * Accepts
 2. Return $<M\#>$
 – Let \neg be TM that inverts output of another
 * Then $\{R,\neg\}$ reduces H to L_2
 – Correctness of C
 * Assume Oracle for deciding L_2 exists
 * $C = \neg\text{Oracle}(R(<M,w>))$ exists and is correct
 1. If $<M,w> \in H$, M halts on w and $M\#$ accepts everything, including even length strings
 $\text{Oracle}(<M\#>)$ does not accept, so C does accept
 2. If $<M,w> \notin H$, M does not halt on w and $M\#$ accepts nothing
 $\text{Oracle}(<M\#>)$ does accept, so C does not accept
 – Then $\text{Oracle}(R(<M,w>))$ decides H
 * But since $H \notin D$, Oracle cannot exist, and therefore $L_2 \notin D$
Decidability: ”Real” Programs

- Since ”real” programming languages are equal in power to TMs, what is undecidable wrt TMs will also be undecidable WRT real programs.

- The following are not decidable:

 1. Given program P and input x, does P halt on x?
 2. Given program P, will P enter an infinite loop on some input?
 3. Given program P and input x, does P ever output a 0? or anything?
 4. Given programs P_1 and P_2, is $P_1 \equiv P_2$?
 5. Given program P, input x, and variable v, does P assign a value to v?
 6. Given program P and code segment S in P, does P ever reach S on any input?
 7. Given program P and code segment S in P, does P reach S on every input?

- While questions like 5, 6, and 7 are about the details of a program’s operation - and would suggest they might be decidable - they are not because they cannot be answered by inspection or by bounded simulation.
Decidability: ”Real” Programs - Theorem 21.12

• Statement:

 Language $EqPrograms =$

 \[\{ \langle P_a, P_b \rangle : P_a \text{ and } P_b \text{ are programs in programming language } PL \text{ and } L(P_a) = L(P_b) \} \notin D \]

• Proof: Let $SimUM$ be simulation of Universal TM written in PL

 – Construct $R(<M_a, M_b>)$ as follows

 1. Using PL, code $P_1(w)$ so that it invokes $SimUM(<M_a, w>)$ and returns its result
 2. Using PL, code $P_2(w)$ so that it invokes $SimUM(<M_b, w>)$ and returns its result
 3. Return $\langle P_1, P_2 \rangle$

 – Correctness of C

 * Assume $Oracle$ for deciding $EqPrograms$ exists
 * $C = Oracle(R(<M_a, M_b>))$ exists and is correct

 1. If $<M_a, M_b> \in EqTMs$, $L(M_a) = L(M_b)$

 $L(P_1) = L(P_2)$, and $Oracle(<P_1, P_2>)$ accepts
 2. If $<M_a, M_b> \notin EqTMs$, $L(M_a) \neq L(M_b)$

 $L(P_1) \neq L(P_2)$, and $Oracle(<P_1, P_2>)$ does not accept

 – Then $Oracle(R(<M_a, M_b>))$ decides $EqTMs$

 * But since $EqTMs \notin D$, $Oracle$ cannot exist, and therefore $EqPrograms \notin D$
Decidability: ”Real” Programs - Theorem 21.13

• Statement:

Language \(L = \{ <M, q> : \text{TM } M \text{ reaches state } q \text{ on some input} \} \notin D \)

• Proof: Let \(R \) be mapping reduction from \(H_{any} \) to \(L \)

 – Construct \(R(<M>) \) as follows
 1. Using \(<M>\), encode \(<M\#>\) for TM \(M\# \) that is the same as \(M \) but
 has a new transition that is constructed as
 * If \(M \) has transition \((q_1, c_1), (q_2, c_2, a)\) where \(q_2 \neq h \) is a halting state,
 replace with \((q_1, c_1), (h, c_2, a)\)
 2. Return \(<M\#, h>\)
 – Correctness of \(C \)
 * Assume \(Oracle \) for deciding \(L \) exists
 * \(C = Oracle(R(<M>)) \) exists and is correct
 1. If \(<M> \in H_{any}, \) there is some string on which \(M \) halts
 · Therefore, there must be some string on which \(M\# \) reached \(h \), and
 \(Oracle(<M\#, h>) \) does accept
 2. If \(<M> \notin H_{any}, \) there is no string on which \(M \) halts
 · Therefore, there is no string for which \(M\# \) reached \(h \), and \(Oracle(<M\#, h>) \) does not accept
 – Then \(Oracle(R(<M>)) \) decides \(H_{any} \)
 * But since \(H_{any} \notin D, \) \(Oracle \) cannot exist, and therefore \(L \notin D \)
Semidecidability: Proofs - Theorems 21.15, 21.16

- Theorem 21.15
 - Statement:
 Language \(H_{\neg \text{any}} = \{ < M > : \text{there does not exist any string on which TM } M \text{ halts } * \} \notin SD \)
 - Proof: Note that \(\neg H_{\neg \text{any}} = H_{\text{any}} \)
 1. Theorem 21.2 proved that \(H_{\text{any}} \in SD, H_{\text{any}} \notin D \)
 2. If \(H_{\neg \text{any}} \in SD \), then \(H_{\text{any}} \in D \) by Theorem 20.6
 3. Therefore \(H_{\neg \text{any}} \notin SD \)

- Theorem 21.16
 - Statement:
 Language \(\neg H_{\epsilon} = \{ < M > : \text{TM } M \text{ does not halt on } \epsilon \} \notin SD \)
 - Proof: Left as exercise
Semidecidability: Proofs - Theorem 21.17

• Statement:
 Language $A_{ab^n} =$
 \[
 \{<M> : M \text{ is a TM and } L(M) = A^n B^n, n \geq 0\} \notin SD
 \]

• Proof (incorrect approach): Let R be mapping reduction from $\neg H$ to A_{ab^n}

 1. Construct $R(<M,w>)$ as follows
 1. Construct encoding $<M\#>$ of TM $M\#(x)$ that, on input x,
 (a) Copies x onto tape 2
 (b) Erases tape 1
 (c) Writes w onto tape 1
 (d) Runs M on w
 (e) Erases tape 1
 (f) *Copies x onto tape 1
 (g) If $x \in A^n B^n$, accept, otherwise loop
 2. Return $<M\#>$

 2. Return $<M\#>$

 Correctness of C

 * Assume Oracle for semideciding A_{ab^n} exists
 * $C = Oracle(R(<M,w>))$ exists and is correct
 1. If M halts on w, $M\#$ reaches step *, and $M\#$ accepts $A^n B^n$
 Oracle($<M\#>$) does accept
 2. If M does not halt on w, $M\#$ does nothing, and $M\#$ does not accept $A^n B^n$
 Oracle($<M\#>$) does not accept
 * But this is backwards
 • Cannot invert the result because Oracle only semidecides
 • To remedy the situation, modify $M\#$ so it
 1. Accepts just $A^n B^n$ (if M does not halt on w), or
 2. Accepts everything (if M does halt on w)
Semidecidability: Proofs - Theorem 21.17 (2)

• Proof (amended): Let \(R \) be mapping reduction from \(\neg H \) to \(A_{anbn} \)

 – Construct \(R(<M, w>) \) as follows
 1. Construct encoding \(<M#> \) of TM \(M#(x) \) that, on input \(x \),
 (a) If \(x \in A^nB^n \), accept
 (b) Otherwise
 i. Erase tape 1
 ii. Write \(w \) onto tape 1
 iii. *Run \(M \) on \(w \)
 iv. Accept
 2. Return \(<M#> \)

 – Correctness of \(C \)
 * Assume Oracle for semideciding \(A_{anbn} \) exists
 * \(C = Oracle(R(<M, w>)) \) exists and is correct
 1. If \(M \) does not halt on \(w \), \(M# \) accepts \(A^nB^n \)
 ✓ \(M# \) stalls at *, so accepts nothing else
 Oracle(\(<M#> \)) does accept
 2. If \(M \) does halt on \(w \), \(M# \) accepts everything
 Oracle(\(<M#> \)) does not accept
 – Then Oracle(\(R(<M, w>) \)) decides \(\neg H \)
 * But since \(\neg H \notin SD \), Oracle cannot exist, and therefore \(L_{anbn} \notin SD \)
Semidecidability: Proofs - Theorem 21.18

- Statement:

 Language \(H_{all} = \{ < M >: \text{TM } M \text{ halts on } \Sigma^* \} \notin SD \)

- Proof (incorrect approach): Let \(R \) be mapping reduction from \(\neg H \) to \(H_{all} \)
 - Construct \(R(<M,w>) \) as follows
 1. Construct encoding \(<M#> \) of TM \(M#(x) \) that, on input \(x \),
 (a) Erases the tape
 (b) Writes \(w \) onto the tape
 (c) *Runs \(M \) on \(w \)
 2. Return \(<M#> \)
 - Correctness of \(C \)
 * Assume \(Oracle \) for semideciding \(H_{all} \) exists
 * \(C = Oracle(R(<M,w>)) \) exists and is correct, and semidecides \(\neg H \)
 1. If \(<M,w> \in \neg H \), \(M \) does not halt on \(w \), and \(M# \) stalls at *, halting on nothing
 \(Oracle(<M#>) \) does not accept
 2. If \(<M,w> \notin \neg H \), \(M \) does halt on \(w \), and \(M# \) halts on everything
 \(Oracle(<M#>) \) does accept
 - But this is reverse of what is needed
 * But cannot use approach used in Theorem 21.17 - behavior would not depend on \(M \)’s halting on \(w \)
Semidecidability: Proofs - Theorem 21.18 (2)

• Proof (amended): Let \(R \) be mapping reduction from \(\neg H \) to \(H_{all} \)

 - Construct \(R(<M, w>) \) as follows

 1. Construct encoding \(<M#> \) of TM \(M#(x) \) that, on input \(x \),
 (a) Copies \(x \) onto tape 2
 (b) Erases tape 1
 (c) Writes \(w \) onto tape 1
 (d) Runs \(M \) on \(w \) for \(|x| \) steps, or until \(M \) halts
 (e) **If \(M \) halts, loop
 (f) *Else halt

 2. Return \(<M#> \)

 - Correctness of \(C \)

 * Assume Oracle for semideciding \(\neg H \) exists

 * \(C = Oracle(R(<M, w>)) \) exists and is correct, and semidecides \(\neg H \)

 1. If \(<M, w> \in \neg H \), \(M \) does not halt on \(w \)
 - No matter how long \(x \) is, \(M \) will not halt in \(|x| \) steps
 - For every \(x \), \(M# \) reaches step *, and halts on everything

 \(Oracle(<M#>) \) does accept

 2. If \(<M, w> \notin \neg H \), \(M \) does halt on \(w \)
 - Requires \(n \) steps
 - If \(|x| < n \), \(M# \) reaches step * and halts
 - If \(|x| \geq n \), \(M# \) stalls at step **
 - \(M# \) does not halt on anything

 \(Oracle(<M#>) \) does not accept

 * But since \(\neg H \notin SD \), Oracle cannot exist, and therefore \(H_{all} \notin SD \)