Decidability: Reduction Proofs

• Basic technique for proving a language is (semi)decidable is reduction

• Based on the following principle:
 – Have problem A that needs to be solved
 – If there exists a problem B, such that B’s solution will enable the solution to A, you can solve A by
 1. Solving B
 2. Using B’s solution to solve A
 – I.e., $B \Rightarrow A$
 – The problem of solving A has been reduced to solving B
 – Note that failure to solve B does not preclude finding a solution for A
 * There may be some C whose solution will enable a solution to A

• Reduction proofs use proof by contradiction
 – Assume you want to show that X has no solution
 – Suppose that Y reduces to X
 * Then, $(Y \text{ reduces to } X) \land X \Rightarrow Y$
 – If Y is chosen with the knowledge that Y cannot be solved, must conclude that
 * X has no solution either

• For our purposes, ”having a solution” means that a language is (semi)decidable

• Formally
 – A reduction R from L_1 to L_2 consists of one or more TMs such that
 1. If there is a TM $Oracle$ that (semi)decides L_2, then
 2. The TMs of R can be combined with $Oracle$ to (semi)decide L_1
 – $L_1 \leq L_2$ denotes that L_1 is reducible to L_2
 – Reduction often referred to as Turing reducibility, since it is defined in terms of TMs
Decidability: Reduction Proofs (2)

- Steps of a reduction proof

Given language L_2, where want to show that $L_2 \notin D$ (or SD)

1. Choose language L_1 such that

 $L_1 \leq L_2$

 $L_1 \notin D$ (or SD)

2. Define the reduction R from L_1 to L_2

 - Assume Oracle exists for deciding L_2
 - Describe the composition C of R and Oracle
 - C will be used to decide L_1

3. Demonstrate that C does, in fact, decide L_1

 - Must show that

 (a) R can be implemented as one or more TMs
 (b) C is correct:

 i. If $x \in L_1 \Rightarrow, C(x)$ does accept
 ii. If $x \notin L_1 \Rightarrow, C(x)$ does not accept

4. Conclude that cannot (semi)decide L_2, since cannot (semi)decide L_1, and hence proposed Oracle cannot exist
Decidability: Reduction Proofs (3)

- Common error is to go in the wrong direction
 - Instead of reducing from language known to be undecidable to the one in question, mistakenly reduce from the one in question to the one known to be undecidable
 - E.g.,
 Want to show A is undecidable and know that B is undecidable
 * Proper way:
 1. Show that B reduces to A (i.e., deciding A means we can decide B), and
 2. Assume there is a procedure for deciding A
 3. Show that this procedure allows us to decide B
 - But that would contradict what we already know about B
 4. Conclude that the hypothesized procedure for deciding A cannot exist
 * Incorrect approach: Reduce from A to B (i.e., deciding B means we can decide A),
 - The situation ultimately says nothing about A’s decidability
 - We know that B cannot be decided, but maybe there is a C that will allow us to decide A

- Reduction often accomplished by mapping instances of A to instances of B
 - Then can use decision procedure of B on transformed instances of A

- Given alphabet Σ
 - L_1 is mapping reducible to L_2, denoted $L_1 \leq_m L_2$, iff there is some computable function f such that
 $$\forall x \in \Sigma^* (x \in L_1 \iff f(x) \in L_2)$$
 - Allows you to ask "Is $f(x)$ in L_2" rather than "Is x in L_1"
 - If f can be computed by TM R, then R is a mapping reduction from L_1 to L_2
 - If $L_1 \leq_M L_2$, and there is a TM Oracle that decides L_2, then
 * Composition $C(x) = \text{Oracle}(R(x))$ will decide L_1
Decidability: Proofs - Theorem 21.1

• Statement:

 Language $H_\epsilon =
 \{ < M >: \text{TM } M \text{ halts on } \epsilon \} \in SD$, but $\notin D$

• Proof ($H_\epsilon \in SD$):

 – Construct $T(< M >)$ as follows:
 1. Run M on ϵ
 2. Accept
 – If M halts on ϵ, T accepts M, and therefore T semidecides M

• Proof ($H_\epsilon \notin D$): Let R be mapping reduction from H to H_ϵ

 – Construct $R(< M, w >)$ as follows
 1. Construct encoding $< M# >$ of TM $M#(x)$ that, on input x,
 * Erases the tape
 * Writes w onto the tape
 * Runs M on w
 2. Return $< M# >$
 – Construction details
 1. Write code to erase tape
 \[
 \begin{array}{c}
 R \rightarrow R \rightarrow \square \\
 \downarrow \\
 \end{array}
 \]
 2. for (each c in w) {
 write c;
 if (c not last character of w)
 write R;
 }
 3. write $L\square M$
Decidability: Proofs - Theorem 21.1 (2)

– Correctness of C
 * Suppose $Oracle$ for deciding H_ϵ exists
 * $M#$ ignores its own input and halts on everything or nothing
 1. If M halts on w, $M#$ halts
 2. If M does not halt on w, $M#$ does not halt
 * If $< M, w > \in H$, M halts on w and $M#$ halts on everything (including ϵ)
 $Oracle(< M# >)$ does accept
 * If $< M, w > \notin H$, M does not halt on w and $M#$ halts on nothing
 $Oracle(< M# >)$ does not accept
– But then $Oracle(R(< M, w >))$ decides H
 * But since $H \notin D$, $Oracle$ cannot exist, and therefore $H_\epsilon \notin D$
Decidability: Proofs - Points to Emphasize

• Decidability reduction proof involves two kinds of languages
 1. Encodings of TMs
 2. Language that a TM accepts
 – This is input as a string to TM that accepts or rejects the string

• Proof involves five types of TMs
 1. Oracle - the hypothesized decision TM
 2. R
 3. C - the composition Oracle(R)
 4. $M#$ - whose encoding is the argument to Oracle
 5. M - TM of interest, whose encoding is argument to R
Decidability: Proofs - Theorem 21.2

- **Statement:**

 Language $H_{any} =$

 \{< M >: \text{There exists at least one string on which TM } M \text{ halts}\} \in SD, \text{ but } \notin D$

- **Proof ($H_{any} \in SD$):**

 - Construct $T(< M >)$ as follows
 1. Use dovetailing to generate strings in Σ^*
 2. Run M on these strings in parallel, one step at a time
 3. If M accepts any string, T accepts

 - Since T halts and accepts whenever M does, T semidecides H_{any}

- **Proof ($H_{any} \notin D$):** Let R be mapping reduction from H to H_{any}

 - Construct $R(< M, w >)$ as follows
 1. Construct encoding $< M\# >$ of TM $M\#(x)$ that, on input x,
 (a) If $x == w$, runs M on w
 (b) Loops otherwise
 2. Return $< M\# >$

 - **Correctness of C**
 * Assume *Oracle* for deciding H_{any} exists
 * $M\#$ can only halt on string w
 1. If $< M, w > \in H, M$ halts on w, and $M\#$ halts
 \hspace{1cm} *Oracle*($< M\# >$) does accept
 2. If $< M, w > \notin H, M$ does not halt on w, and $M\#$ does not halt
 \hspace{1cm} *Oracle*($< M\# >$) does not accept

 - *Oracle*($R(< M, w >)$) decides H
 * But since $H \notin D$, *Oracle* cannot exist, and therefore $H_{any} \notin D$
Decidability: Proofs - Theorem 21.2 (2)

- Alternative proof ($H_{any} \notin D$):
 - Construct mapping reduction $R(<M, w>)$ from H to H_{any} as follows
 1. Construct encoding $<M\#>$ of TM $M\#(x)$ that, on input x,
 (a) Erases tape
 (b) Writes w on tape
 (c) Runs M on w
 2. Return $<M\#>$
 - Correctness of C
 * Assume $Oracle$ for deciding H_{any} exists
 * $M\#$ can only halt on string w
 1. If $<M, w> \in H$, M halts on w, $M\#$ halts on everything
 - $Oracle(<M\#>)$ does accept
 2. If $<M, w> \notin H$, M does not halt on w, $M\#$ does not halt
 - $Oracle(<M\#>)$ does not accept
 - $Oracle(R(<M, w>))$ decides H
 * But since $H \notin D$, $Oracle$ cannot exist, and therefore $H_{any} \notin D$
Decidability: Proofs - Theorem 21.3

- Statement:

 Language $H_{all} =$
 $$\{<M>: \text{TM } M \text{ halts on } \Sigma^*\} \notin D$$

- Proof: Let R be mapping reduction from H_ϵ to H_{all}
 - Construct $R(<M>)$ as follows
 1. Construct encoding $<M\#>$ of TM $M\#(x)$ that, on input x,
 * Erases the tape
 * Runs M
 2. Return $<M\#>$
 - Correctness of C
 * Assume Oracle for deciding H_{all} exists
 * $C = Oracle(R(<M>))$ exists and is correct
 1. If $<M> \in H_\epsilon$, M halts on ϵ and $M\#$ halts on everything
 $Oracle(<M\#>)$ does accept
 2. If $<M> \notin H_\epsilon$, M does not halt on ϵ and $M\#$ halts on nothing
 $Oracle(<M\#>)$ does not accept
 - Then $Oracle(R(<M,w>))$ decides H_ϵ
 * But since $H_\epsilon \notin D$, Oracle cannot exist, and therefore $H_{all} \notin D$
Decidability: Proofs - Theorem 21.4

• Statement:

Language $A =
\{ <M, w>: M \text{ is a TM and } w \in L(M) \} \notin D$

• Discussion:

– Would be easy to define $R(<M, w>)$ as simply \texttt{return \langle M, w \rangle};

– But it will not work

 * If $<M, w> \in H$, then M halts on w

 · If it halts and accepts, $\text{Oracle}(<M, w>)$ will also accept

 · If it halts and does not accept, $\text{Oracle}(<M, w>)$ will also not accept

 * Therefore, cannot guarantee that $\text{Oracle}(<M, w>)$ only accepts whenever M halts on w

• Proof: Let R be mapping reduction from H to A

 – Construct $R(<M, w>)$ as follows

 1. Construct encoding $<M \#>$ of TM $M\#(x)$ that, on input x,

 * Erases the tape

 * Writes w to the tape

 * Runs M on w

 * Accepts
 2. Return $<M \#, w>$

 – Correctness of C

 * Assume Oracle for deciding A exists

 * $C = \text{Oracle}(R(<M, w>))$ exists and is correct

 1. If $<M, w> \in H$, M halts on w and $M\#$ accepts everything

 $\text{Oracle}(<M\#, w>)$ does accept
 2. If $<M, w> \notin H$, M does not halt on anything and $M\#$ halts on nothing

 $\text{Oracle}(<M\#, w>)$ does not accept

 – Then $\text{Oracle}(R(<M, w>))$ decides H

 * But since $H \notin D$, Oracle cannot exist, and therefore $A \notin D$
Decidability: Proofs - Theorems 21.5, 21.6, 21.7

• Theorem 21.5
 - Statement:
 Language $A_{\text{epsilon}} = \{ <M> : \text{TM } M \text{ halts on } \epsilon \} \notin D$
 - Proof: Similar to proof of Theorem 21.1

• Theorem 21.6
 - Statement:
 Language $A_{\text{any}} = \{ <M> : \text{TM } M \text{ accepts at least one string} \} \notin D$
 - Proof: Similar to proof of Theorem 21.2

• Theorem 21.7
 - Statement:
 Language $A_{\text{all}} = \{ <M> : \text{TM } M \text{ accepts every string in } \Sigma^* \} \notin D$
 - Proof: Similar to proof of Theorem 21.3
Decidability: Proofs - Theorem 21.8

- **Statement:**

 Language $EqTMs = \{ <M_a, M_b>: M_a, M_b$ are TMs and $L(M_a) = L(M_b) \} \notin D$

- **Proof:** Let R be mapping reduction from A_{all} to $EqTMs$

 - Construct $R(<M>)$ as follows
 1. Construct encoding $<M#>$ of TM $M#(x)$ that, on input x,
 * Accepts
 2. Return $<M, M#>$

 - Correctness of C
 * Assume Oracle for deciding $EqTMs$ exists
 * $C = Oracle(R(<M>))$ exists and is correct
 1. If $<M> \in A_{all}$, $L(M) = L(M#)$
 $Oracle(<M, M#>)$ does accept
 2. If $<M> \notin A_{all}$, $L(M) \neq L(M#)$
 $Oracle(<M, M#>)$ does not accept

 - Then $Oracle(R(<M, w>))$ decides A_{all}
 * But since $A_{all} \notin D$, Oracle cannot exist, and therefore $EqTMs \notin D$
Decidability: Proofs - Theorem 21.9

• Statement:

Language \(L_2 = \{< M >: \text{TM } M \text{ accepts no even length strings}\} \notin D \)

• Discussion:

 – If use mapping reduction from \(H \) to \(L_2 \) as usual
 * Oracle will produce inverse result desired
 – Solution is to use a second TM that inverts Oracle’s output

• Proof (Not a mapping reduction): Let \(R \) be mapping reduction from \(H \) to \(L_2 \)

 – Construct \(R(< M, w >) \) as follows
 1. Construct encoding \(< M# > \) of TM \(M#(x) \) that, on input \(x \),
 * Erases the tape
 * Writes \(w \) to the tape
 * Runs \(M \) on \(w \)
 * Accepts
 2. Return \(< M# > \)
 – Let \(\neg \) be TM that inverts output of another
 * Then \(\{R, \neg\} \) reduces \(H \) to \(L_2 \)
 – Correctness of \(C \)
 * Assume Oracle for deciding \(L_2 \) exists
 * \(C = \neg \text{Oracle}(R(< M, w >)) \) exists and is correct
 1. If \(< M, w > \in H, M \text{ halts on } w \text{ and } M# \text{ accepts everything, including even length strings} \)
 \(\text{Oracle}(< M# >) \text{ does not accept, so } C \text{ does accept} \)
 2. If \(< M, w > \notin H, M \text{ does not halt on } w \text{ and } M# \text{ accepts nothing} \)
 \(\text{Oracle}(< M# >) \text{ does accept, so } C \text{ does not accept} \)
 – Then Oracle(\(R(< M, w >)) \) decides \(H \)
 * But since \(H \notin D \), Oracle cannot exist, and therefore \(L_2 \notin D \)
Decidability: ”Real” Programs

• Since ”real” programming languages are equal in power to TMs, what is undecidable wrt TMs will also be undecidable WRT real programs

• The following are not decidable:

 1. Given program P and input x, does P halt on x?
 2. Given program P, will P enter an infinite loop on some input?
 3. Given program P and input x, does P ever output a 0? or anything?
 4. Given programs P_1 and P_2, is $P_1 \equiv P_2$?
 5. Given program P, input x, and variable v, does P assign a value to v?
 6. Given program P and code segment S in P, does P ever reach S on any input?
 7. Given program P and code segment S in P, does P reach S on every input?

• While questions like 5, 6, and 7 are about the details of a program’s operation - and would suggest they might be decidable - they are not because they cannot be answered by inspection or by bounded simulation
Decidability: "Real" Programs - Theorem 21.12

• Statement:

Language $EqPrograms =$

\[
\{ < P_a, P_b > : P_a \text{ and } P_b \text{ are programs in programming language } PL \\
\quad \text{and } L(P_a) = L(P_b) \}
\notin D
\]

• Proof: Let $SimUM$ be simulation of Universal TM written in PL

 1. Construct $R(< M_a, M_b >)$ as follows
 1. Using PL, code $P_1(w)$ so that it invokes $SimUM(< M_a, w >)$ and returns its result
 2. Using PL, code $P_2(w)$ so that it invokes $SimUM(< M_b, w >)$ and returns its result
 3. Return $< P_1, P_2 >$

 2. Correctness of C
 * Assume $Oracle$ for deciding $EqPrograms$ exists
 * $C = Oracle(R(< M_a, M_b >))$ exists and is correct
 1. If $< M_a, M_b > \in EqTMs$, $L(M_a) = L(M_b)$
 $L(P_1) = L(P_2)$, and $Oracle(< P_1, P_2 >)$ accepts
 2. If $< M_a, M_b > \notin EqTMs$, $L(M_a) \neq L(M_b)$
 $L(P_1) \neq L(P_2)$, and $Oracle(< P_1, P_2 >)$ does not accept

 3. Then $Oracle(R(< M_a, M_b >))$ decides $EqTMs$
 * But since $EqTMs \notin D$, $Oracle$ cannot exist, and therefore $EqPrograms \notin D$
Decidability: "Real" Programs - Theorem 21.13

• Statement:

Language \(L = \{ \langle M, q \rangle : \text{TM } M \text{ reaches state } q \text{ on some input } \} \notin D \)

• Proof: Let \(R \) be mapping reduction from \(H_{\text{any}} \) to \(L \)

 – Construct \(R(\langle M \rangle) \) as follows

 1. Using \(\langle M \rangle \), encode \(\langle M# \rangle \) for TM \(M# \) that is the same as \(M \) but has a new transition that is constructed as

 * If \(M \) has transition \(((q_1, c_1), (q_2, c_2, a)) \) where \(q_2 \neq h \) is a halting state, replace with \(((q_1, c_1), (h, c_2, a)) \)

 2. Return \(\langle M#, h \rangle \)

 – Correctness of \(C \)

 * Assume Oracle for deciding \(L \) exists

 * \(C = \text{Oracle}(R(\langle M \rangle)) \) exists and is correct

 1. If \(\langle M \rangle \in H_{\text{any}} \), there is some string on which \(M \) halts

 · Therefore, there must be some string on which \(M# \) reached \(h \), and \(\text{Oracle}(\langle M#, h \rangle) \) does accept

 2. If \(\langle M \rangle \notin H_{\text{any}} \), there is no string on which \(M \) halts

 · Therefore, there is no string for which \(M# \) reached \(h \), and \(\text{Oracle}(\langle M#, h \rangle) \) does not accept

 – Then \(\text{Oracle}(R(\langle M \rangle)) \) decides \(H_{\text{any}} \)

 * But since \(H_{\text{any}} \notin D \), Oracle cannot exist, and therefore \(L \notin D \)
Semidecidability: Proofs - Theorems 21.15, 21.16

• Theorem 21.15

 – Statement:
 Language $H_{\text{any}} = \{ <M> : \text{there does not exist any string on which TM } M \text{ halts } * \} \notin SD$

 – Proof: Note that $\neg H_{\text{any}} = H_{\text{any}}$
 1. Theorem 21.2 proved that $H_{\text{any}} \in SD, H_{\text{any}} \notin D$
 2. If $H_{\text{any}} \in SD$, then $H_{\text{any}} \in D$ by Theorem 20.6
 3. Therefore $H_{\text{any}} \notin SD$

• Theorem 21.16

 – Statement:
 Language $\neg H_{\epsilon} = \{ <M> : \text{TM } M \text{ does not halt on } \epsilon \} \notin SD$

 – Proof: Left as exercise
Semidecidability: Proofs - Theorem 21.17

• Statement:

Language $A_{anbn} =$

\{<M>: M is a TM and $L(M) = A^nB^n, n \geq 0\} \notin SD$

• Proof (incorrect approach): Let R be mapping reduction from $\neg H$ to A_{anbn}

 - Construct $R(<M,w>)$ as follows

 1. Construct encoding $<M#>$ of TM $M#(x)$ that, on input x,
 (a) Copies x onto tape 2
 (b) Erases tape 1
 (c) Writes w onto tape 1
 (d) Runs M on w
 (e) Erases tape 1
 (f) *Copies x onto tape 1
 (g) If $x \in A^nB^n$, accept, otherwise loop

 2. Return $<M#>$

 - Correctness of C

 * Assume Oracle for semideciding A_{anbn} exists

 * $C = Oracle(R(<M,w>))$ exists and is correct

 1. If M halts on w, $M#$ reaches step *, and $M#$ accepts A^nB^n

 $Oracle(<M#>)$ does accept

 2. If M does not halt on w, $M#$ does nothing, and $M#$ does not accept A^nB^n

 $Oracle(<M#>)$ does not accept

 * But this is backwards

 • Cannot invert the result because Oracle only semidecides
 • To remedy the situation, modify $M#$ so it

 1. Accepts just A^nB^n (if M does not halt on w), or
 2. Accepts everything (if M does halt on w)
• Proof (amended): Let R be mapping reduction from $\neg H$ to A_{anbn}

 - Construct $R(<M, w>)$ as follows
 1. Construct encoding $<M\#>$ of TM $M\#(x)$ that, on input x,
 (a) If $x \in A^nB^n$, accept
 (b) Otherwise
 i. Erase tape 1
 ii. Write w onto tape 1
 iii. *Run M on w
 iv. Accept
 2. Return $<M\#>$

 - Correctness of C
 * Assume Oracle for semideciding A_{anbn} exists
 * $C = Oracle(R(<M, w>))$ exists and is correct
 1. If M does not halt on w, $M\#$ accepts A^nB^n
 · $M\#$ stalls at $*$, so accepts nothing else
 $Oracle(<M\#>)$ does accept
 2. If M does halt on w, $M\#$ accepts everything
 $Oracle(<M\#>)$ does not accept
 - Then $Oracle(R(<M, w>))$ decides $\neg H$
 * But since $\neg H \notin SD$, Oracle cannot exist, and therefore $L_{anbn} \notin SD$
Semidecidability: Proofs - Theorem 21.18

• Statement:

Language $H_{all} =$

$\{ \langle M \rangle : \text{TM } M \text{ halts on } \Sigma^* \} \notin SD$

• Proof (incorrect approach): Let R be mapping reduction from $\neg H$ to H_{all}

 - Construct $R(\langle M, w \rangle)$ as follows

 1. Construct encoding $\langle M\# \rangle$ of TM $M\#(x)$ that, on input x,

 (a) Erases the tape
 (b) Writes w onto the tape
 (c) *Runs M on w

 2. Return $\langle M\# \rangle$

 - Correctness of C

 * Assume Oracle for semideciding H_{all} exists
 * $C = Oracle(R(\langle M, w \rangle))$ exists and is correct, and semidecides $\neg H$

 1. If $\langle M, w \rangle \in \neg H$, M does not halt on w, and $M\#$ stalls at *, halting on nothing

 $Oracle(\langle M\# \rangle)$ does not accept

 2. If $\langle M, w \rangle \notin \neg H$, M does halt on w, and $M\#$ halts on everything

 $Oracle(\langle M\# \rangle)$ does accept

 - But this is reverse of what is needed

 * But cannot use approach used in Theorem 21.17 - behavior would not depend on M’s halting on w
Semidecidability: Proofs - Theorem 21.18 (2)

• Proof (amended): Let R be mapping reduction from $\neg H$ to H_{all}

 - Construct $R(<M, w>)$ as follows
 1. Construct encoding $<M\#>$ of TM $M\#(x)$ that, on input x,
 (a) Copies x onto tape 2
 (b) Erases tape 1
 (c) Writes w onto tape 1
 (d) Runs M on w for $|x|$ steps, or until M halts
 (e) **If M halts, loop
 (f) *Else halt
 2. Return $<M\#>$

 - Correctness of C
 * Assume Oracle for semideciding $\neg H$ exists
 * $C = Oracle(R(<M, w>))$ exists and is correct, and semidecides $\neg H$
 1. If $<M, w> \in \neg H$, M does not halt on w
 • No matter how long x is, M will not halt in $|x|$ steps
 • For every x, $M\#$ reaches step * , and halts on everything
 $Oracle(<M\#>)$ does accept
 2. If $<M, w> \notin \neg H$, M does halt on w
 • Requires n steps
 • If $|x| < n$, $M\#$ reaches step * and halts
 • If $|x| \geq n$, $M\#$ stalls at step **
 • $M\#$ does not halt on anything
 $Oracle(<M\#>)$ does not accept
 * But since $\neg H \notin SD$, Oracle cannot exist, and therefore $H_{all} \notin SD$