Regular Expressions

Chapter 6
Regular Languages

- Regular Language
- Regular Expression
- Finite State Machine
 - Accepts

L
Regular Expressions

The regular expressions over an alphabet Σ are all and only the strings that can be obtained as follows:

1. \emptyset is a regular expression.
2. ϵ is a regular expression.
3. Every element of Σ is a regular expression.
4. If α, β are regular expressions, then so is $\alpha\beta$.
5. If α, β are regular expressions, then so is $\alpha\cup\beta$.
6. If α is a regular expression, then so is α^*.
7. α is a regular expression, then so is α^+.
8. If α is a regular expression, then so is (α).
Regular Expression Examples

If $\Sigma = \{a, b\}$, the following are regular expressions:

- \emptyset
- ε
- a
- $(a \cup b)^*$
- $abba \cup \varepsilon$
Regular Expressions Define Languages

Define L, a **semantic interpretation function** for regular expressions:

1. $L(\emptyset) = \emptyset$.
2. $L(\varepsilon) = \{\varepsilon\}$.
3. $L(c)$, where $c \in \Sigma = \{c\}$.
4. $L(\alpha\beta) = L(\alpha) \cdot L(\beta)$.
5. $L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$.
6. $L(\alpha^*) = (L(\alpha))^*$.
7. $L(\alpha^+) = L(\alpha\alpha^*) = L(\alpha) \cdot (L(\alpha))^*$. If $L(\alpha)$ is equal to \emptyset, then $L(\alpha^+)$ is also equal to \emptyset. Otherwise $L(\alpha^+)$ is the language that is formed by concatenating together one or more strings drawn from $L(\alpha)$.
8. $L((\alpha)) = L(\alpha)$.
The Role of the Rules

- Rules 1, 3, 4, 5, and 6 give the language its power to define sets.
- Rule 8 has as its only role grouping other operators.
- Rules 2 and 7 appear to add functionality to the regular expression language, but they don’t.

2. ε is a regular expression.

7. α is a regular expression, then so is α^+.
Analyzing a Regular Expression

\[
L((a \cup b)^*b) = L((a \cup b)^*) \ L(b) \\
= (L((a \cup b)))^* \ L(b) \\
= (L(a) \cup L(b))^* \ L(b) \\
= (\{a\} \cup \{b\})^* \ \{b\} \\
= \{a, b\}^* \ \{b\}.
\]
Examples

\[L(a^*b^*) = \]

\[L((a \cup b)^*) = \]

\[L((a \cup b)^*a^*b^*) = \]

\[L((a \cup b)^*abba(a \cup b)^*) = \]
Going the Other Way

\[L = \{ w \in \{a, b\}^* : |w| \text{ is even} \} \]
Going the Other Way

\[L = \{ w \in \{a, b\}^*: |w| \text{ is even}\} \]

\[(a \cup b) (a \cup b)^* \]

\[(aa \cup ab \cup ba \cup bb)^* \]
Going the Other Way

$L = \{ w \in \{a, b\}^*: |w| \text{ is even} \}$

$\ (a \cup b) (a \cup b))^* \ (aa \cup ab \cup ba \cup bb)^*$

$L = \{ w \in \{a, b\}^*: w \text{ contains an odd number of a’s} \}$
Going the Other Way

$L = \{ w \in \{a, b\}^*: |w| \text{ is even}\}$

$$(a \cup b) (a \cup b))^*$$

$$(aa \cup ab \cup ba \cup bb)^*$$

$L = \{ w \in \{a, b\}^*: w \text{ contains an odd number of } a \text{'s}\}$

$b^* (ab^*ab^*)^* a b^*$

$b^* a b^* (ab^*ab^*)^*$
More Regular Expression Examples

$L \left((aa^*) \cup \varepsilon \right) =$

$L \left((a \cup \varepsilon)^* \right) =$

$L = \{w \in \{a, b\}^*: \text{there is no more than one } b \text{ in } w\}$

$L = \{w \in \{a, b\}^* : \text{no two consecutive letters in } w \text{ are the same}\}$
Common Idioms

\[(\alpha \cup \varepsilon)\]

\[(a \cup b)^*\]
Operator Precedence in Regular Expressions

<table>
<thead>
<tr>
<th>Highest</th>
<th>Regular Expressions</th>
<th>Arithmetic Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleene star</td>
<td>concatenation</td>
<td>exponentiation</td>
</tr>
<tr>
<td>Lowest</td>
<td>union</td>
<td>multiplication</td>
</tr>
</tbody>
</table>

```
(\text{a}\ b^* \cup \text{c}\ d^*)
```

```
x\ y^2 + i\ j^2
```
The Details Matter

\[a^* \cup b^* \neq (a \cup b)^* \]

\[(ab)^* \neq a^*b^* \]
The Details Matter

$L_1 = \{w \in \{a, b\}^* : \text{every } a \text{ is immediately followed by a } b\}$

A regular expression for L_1:

A FSM for L_1:

$L_2 = \{w \in \{a, b\}^* : \text{every } a \text{ has a matching } b \text{ somewhere}\}$

A regular expression for L_2:

A FSM for L_2:
Kleene’s Theorem

Finite state machines and regular expressions define the same class of languages. To prove this, we must show:

Theorem: Any language that can be defined with a regular expression can be accepted by some FSM and so is regular.

Theorem: Every regular language (i.e., every language that can be accepted by some DFSM) can be defined with a regular expression.
For Every Regular Expression
There is a Corresponding FSM

We’ll show this by construction. An FSM for:

∅:
For Every Regular Expression
There is a Corresponding FSM

We’ll show this by construction. An FSM for:

∅:
For Every Regular Expression There is a Corresponding FSM

We’ll show this by construction. An FSM for:

\emptyset:

A single element of Σ:
For Every Regular Expression
There is a Corresponding FSM

We’ll show this by construction. An FSM for:

∅:

A single element of Σ:
For Every Regular Expression
There is a Corresponding FSM

We’ll show this by construction. An FSM for:

∅:

A single element of Σ:

ε (∅*):
For Every Regular Expression There is a Corresponding FSM

We’ll show this by construction. An FSM for:

∅:

A single element of Σ:

ε (∅∗):
Union

If α is the regular expression $\beta \cup \gamma$ and if both $L(\beta)$ and $L(\gamma)$ are regular:
Concatenation

If α is the regular expression $\beta\gamma$ and if both $L(\beta)$ and $L(\gamma)$ are regular:
Kleene Star

If \(\alpha \) is the regular expression \(\beta^* \) and if \(L(\beta) \) is regular:
An Example

\[(b \cup ab)^*\]

An FSM for \(b\)
An FSM for \(a\)
An FSM for \(b\)

An FSM for \(ab\):

\[\text{An FSM for } ab:\]
An Example

\((b \cup ab)^*\)

An FSM for \((b \cup ab)\):
An Example

$$(b \cup ab)^*$$

An FSM for $$(b \cup ab)^*$$:
The Algorithm \textit{regextofsm}

\textit{regextofsm}(\alpha: \text{regular expression}) =

Beginning with the primitive subexpressions of \(\alpha \) and working outwards until an FSM for all of \(\alpha \) has been built do:

Construct an FSM as described above.
For Every FSM There is a Corresponding Regular Expression

We’ll show this by construction.

The key idea is that we’ll allow arbitrary regular expressions to label the transitions of an FSM.
A Simple Example

Let M be:

Suppose we rip out state 2:

```
\begin{array}{c}
  q_1 & \xrightarrow{a} & q_2 \xrightarrow{a} & q_3 \\
  & \xrightarrow{b} & \\
\end{array}
\begin{array}{c}
  q_1 \xrightarrow{ab^*a} q_3 \\
\end{array}
```
The Algorithm \textit{fsmtoregexheuristic}

\textit{fsmtoregexheuristic}(M: FSM) =

1. Remove unreachable states from \(M \).
2. If \(M \) has no accepting states then return \(\emptyset \).
3. If the start state of \(M \) is part of a loop, create a new start state \(s \) and connect \(s \) to \(M' \)'s start state via an \(\varepsilon \)-transition.
4. If there is more than one accepting state of \(M \) or there are any transitions out of any of them, create a new accepting state and connect each of \(M' \)'s accepting states to it via an \(\varepsilon \)-transition. The old accepting states no longer accept.
5. If \(M \) has only one state then return \(\varepsilon \).
6. Until only the start state and the accepting state remain do:
 6.1 Select \(rip \) (not \(s \) or an accepting state).
 6.2 Remove \(rip \) from \(M \).
 6.3 *Modify the transitions among the remaining states so \(M \) accepts the same strings.
7. Return the regular expression that labels the one remaining transition from the start state to the accepting state.
An Example

1. Create a new initial state and a new, unique accepting state, neither of which is part of a loop.
An Example, Continued

2. Remove states and arcs and replace with arcs labelled with larger and larger regular expressions.
An Example, Continued

Remove state 3:
An Example, Continued

Remove state 2:
An Example, Continued

Remove state 1:

\[(ab \cup a^{*}b)^{*}(a \cup \varepsilon) \]
When It’s Hard

\[M = \]

![Diagram](image-url)
When It’s Hard

A regular expression for M:

$$a \ (aa)^*$$
$$\cup \ (aa)^* \ b \ (b(aa)^*b)^* \ ba(aa)^*$$
$$\cup \ [a(aa)^* \ b \ \cup \ (b \ \cup \ a(aa)^* \ b) \ \ (b(aa)^* \ b)^* \ (a \ \cup \ ba(aa)^*b)]$$
$$[b(aa)^* \ b \ \cup \ (a \ \cup \ b(aa)^* \ ab) \ \ (b(aa)^* \ b)^* \ (a \ \cup \ ba(aa)^*b)]$$
$$[b(aa)^* \ \cup \ (a \ \cup \ b(aa)^* \ ab) \ (b(aa)^* \ b)^* \ ba(aa)^*]$$
Further Modifications to M Before We Start

We require that, from every state other than the accepting state there must be exactly one transition to every state (including itself) except the start state. And into every state other than the start state there must be exactly one transition from every state (including itself) except the accepting state.

1. If there is more than one transition between states p and q, collapse them into a single transition:

becomes:

\[
\begin{array}{c}
1 \\
\longrightarrow \\
\\downarrow b \\
\rightarrow \\
2
\end{array}
\]

\[
\begin{array}{c}
1 \\
\longrightarrow \\
\\downarrow a \\
\rightarrow \\
2
\end{array}
\]

\[
\begin{array}{c}
1 \\
\longrightarrow \\
\\downarrow a \cup b \\
\rightarrow \\
2
\end{array}
\]
Further Modifications to M Before We Start

2. If any of the required transitions are missing, add them:

becomes:
Ripping Out States

3. Choose a state. Rip it out. Restore functionality.

Suppose we rip state 2.
What Happens When We Rip?

Consider any pair of states p and q. Once we remove rip, how can M get from p to q?

- It can still take the transition that went directly from p to q, or
- It can take the transition from p to rip. Then, it can take the transition from rip back to itself zero or more times. Then it can take the transition from rip to q.
Defining $R(p, q)$

After removing rip, the new regular expression that should label the transition from p to q is:

$$R(p, q) \quad \text{/* Go directly from } p \text{ to } q$$

$$\cup$$

$$R(p, rip) \quad \text{/* Go from } p \text{ to } rip, \text{ then}$$

$$R(rip, rip)^* \quad \text{/* Go from } rip \text{ back to itself any number of times, then}$$

$$R(rip, q) \quad \text{/* Go from } rip \text{ to } q$$

Without the comments, we have:

$$R' = R(p, q) \cup R(p, rip) \, R(rip, rip)^* \, R(rip, q)$$
Returning to Our Example

Let \(\text{rip} \) be state 2. Then:

\[
R' = R(p, q) \cup R(p, \text{rip}) R(\text{rip}, \text{rip})^* R(p, \text{rip})
\]

\[
R'(1, 3) = R(1, 3) \cup R(1, \text{rip}) R(\text{rip}, \text{rip})^* R(\text{rip}, 3)
\]

\[
= R(1, 3) \cup R(1, 2) R(2, 2)^* R(2, 3)
\]

\[
= \emptyset \cup a b^* a
\]

\[
= a b^* a
\]
The Algorithm \texttt{fsmtoregex}

\texttt{fsmtoregex}(M: FSM) =
1. \(M' = \text{standardize}(M: \text{FSM})\).
2. Return \texttt{buildregex}(M').

\texttt{standardize}(M: FSM) =
1. Remove unreachable states from \(M\).
2. If necessary, create a new start state.
3. If necessary, create a new accepting state.
4. If there is more than one transition between states \(p\) and \(q\), collapse them.
5. If any transitions are missing, create them with label \(\emptyset\).
The Algorithm \textit{fsmtoregex}

\texttt{buildregex}(M: FSM) =

1. If \(M \) has no accepting states then return \(\emptyset \).
2. If \(M \) has only one state, then return \(\varepsilon \).
3. Until only the start and accepting states remain do:
 3.1 Select some state \(rip \) of \(M \).
 3.2 For every transition from \(p \) to \(q \), if both \(p \) and \(q \) are not \(rip \) then do
 Compute the new label \(R' \) for the transition from \(p \) to \(q \):
 \[
 R'(p, q) = R(p, q) \cup R(p, rip) \cdot R(rip, rip)^* \cdot R(rip, q)
 \]
 3.3 Remove \(rip \) and all transitions into and out of it.
4. Return the regular expression that labels the transition from the start state to the accepting state.
A Special Case of Pattern Matching

Suppose that we want to match a pattern that is composed of a set of keywords. Then we can write a regular expression of the form:

$$(\Sigma^* (k_1 \cup k_2 \cup \ldots \cup k_n) \Sigma^*)^+$$

For example, suppose we want to match:

$$\Sigma^* \text{ finite state machine} \cup \text{FSM} \cup \text{finite state automaton}\Sigma^*$$

We can use regextofsm to build an FSM. But …

We can instead use buildkeywordFSM.
{cat, bat, cab}

The single keyword \textit{cat}:

\begin{tikzpicture}

 \node[state, initial] (q0) at (0,0) {q_0};
 \node[state] (c) at (1,0) {c};
 \node[state] (a) at (2,0) {a};
 \node[state] (t) at (3,0) {t};
 \node[state, accepting] (accept) at (4,0) {Σ};

 \path[->] (q0) edge node {c} (c);
 \path[->] (c) edge node {a} (a);
 \path[->] (a) edge node {t} (t);
 \path[loop above] (t) edge node {$\neg\{c\}$} (t);
 \path[loop above] (c) edge node {$\neg\{c\}$} (c);

\end{tikzpicture}
\{cat, bat, cab\}

Adding \texttt{bat}:

\[
\begin{aligned}
\neg\{c,b,a\} \\
\end{aligned}
\]
{cat, bat, cab}

Adding cab:
A Biology Example – BLAST

Given a protein or DNA sequence, find others that are likely to be evolutionarily close to it.

ESGHDTTTYYYNKNRYPAGWNNHHDQMFFWV

Build a DFSM that can examine thousands of other sequences and find those that match any of the selected patterns.
Regular Expressions in Perl

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>Concatenation</td>
<td>Matches a, then b, then c, where a, b, and c are any regexs</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a*</td>
<td>Kleene star</td>
<td>Matches 0 or more a’s, where a is any regex</td>
</tr>
<tr>
<td>a+</td>
<td>At least one</td>
<td>Matches 1 or more a’s, where a is any regex</td>
</tr>
<tr>
<td>a?</td>
<td></td>
<td>Matches 0 or 1 a’s, where a is any regex</td>
</tr>
<tr>
<td>a{n, m}</td>
<td>Replication</td>
<td>Matches at least n but no more than m a’s, where a is any regex</td>
</tr>
<tr>
<td>a*?</td>
<td>Parsimonious</td>
<td>Turns off greedy matching so the shortest match is selected</td>
</tr>
<tr>
<td>a+?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>Wild card</td>
<td>Matches any character except newline</td>
</tr>
<tr>
<td>^</td>
<td>Left anchor</td>
<td>Anchors the match to the beginning of a line or string</td>
</tr>
<tr>
<td>$</td>
<td>Right anchor</td>
<td>Anchors the match to the end of a line or string</td>
</tr>
<tr>
<td>[a-z]</td>
<td>Alphanumeric</td>
<td>Assuming a collating sequence, matches any single character in range</td>
</tr>
<tr>
<td>[^a-z]</td>
<td>Nonalphanumeric</td>
<td>Matches any character not in range</td>
</tr>
<tr>
<td>\d</td>
<td>Digit</td>
<td>Matches any single digit, i.e., string in [0-9]</td>
</tr>
<tr>
<td>\D</td>
<td>Nondigit</td>
<td>Matches any single nondigit character, i.e., [^0-9]</td>
</tr>
<tr>
<td>\w</td>
<td>Alphanumeric</td>
<td>Matches any single “word” character, i.e., [a-zA-Z0-9]</td>
</tr>
<tr>
<td>\W</td>
<td>Nonalphanumeric</td>
<td>Matches any character in [^a-zA-Z0-9]</td>
</tr>
<tr>
<td>\s</td>
<td>White space</td>
<td>Matches any character in [space, tab, newline, etc.]</td>
</tr>
</tbody>
</table>
Regular Expressions in Perl

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\S</td>
<td>Nonwhite space</td>
<td>Matches any character not matched by \S</td>
</tr>
<tr>
<td>\n</td>
<td>Newline</td>
<td>Matches newline</td>
</tr>
<tr>
<td>\r</td>
<td>Return</td>
<td>Matches return</td>
</tr>
<tr>
<td>\t</td>
<td>Tab</td>
<td>Matches tab</td>
</tr>
<tr>
<td>\f</td>
<td>Formfeed</td>
<td>Matches formfeed</td>
</tr>
<tr>
<td>\b</td>
<td>Backspace</td>
<td>Matches backspace inside []</td>
</tr>
<tr>
<td>\b</td>
<td>Word boundary</td>
<td>Matches a word boundary outside []</td>
</tr>
<tr>
<td>\B</td>
<td>Nonword boundary</td>
<td>Matches a non-word boundary</td>
</tr>
<tr>
<td>\0</td>
<td>Null</td>
<td>Matches a null character</td>
</tr>
<tr>
<td>\nnn</td>
<td>Octal</td>
<td>Matches an ASCII character with octal value \nnn</td>
</tr>
<tr>
<td>\xnn</td>
<td>Hexadecimal</td>
<td>Matches an ASCII character with hexadecimal value \nn</td>
</tr>
<tr>
<td>\cX</td>
<td>Control</td>
<td>Matches an ASCII control character</td>
</tr>
<tr>
<td>\char</td>
<td>Quote</td>
<td>Matches \char; used to quote symbols such as . and \</td>
</tr>
<tr>
<td>(a)</td>
<td>Store</td>
<td>Matches (a), where (a) is any regex, and stores the matched string in the next variable</td>
</tr>
<tr>
<td>\1</td>
<td>Variable</td>
<td>Matches whatever the first parenthesized expression matched</td>
</tr>
<tr>
<td>\2</td>
<td></td>
<td>Matches whatever the second parenthesized expression matched</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For all remaining variables</td>
</tr>
</tbody>
</table>
Using Regular Expressions in the Real World

Matching numbers:

-? ([0-9]+(\.[0-9]*)? | \.[0-9]+)

Matching ip addresses:

S !<emphasis> ([0-9]{1,3} (\ . [0-9] {1,3}){3}) </emphasis> !<inet> $1 </inet>!

Finding doubled words:

\< ([A-Za-z]+) \s+ \1 \>
More Regular Expressions

Identifying spam:

```
\badv\(?ert\)?\b
```

Trawl for email addresses:

```
\b[A-Za-z0-9_%-]+@[A-Za-z0-9_%-]+ (\.[A-Za-z]+)+\{1,4\}\b
```
Using Substitution

Building a chatbot:

On input:

<phrase1> is <phrase2>

the chatbot will reply:

Why is <phrase1> <phrase2>?
Chatbot Example

<user> The food there is awful
<chatbot> Why is the food there awful?

Assume that the input text is stored in the variable \$text:

\$text =~
 s/^([A-Za-z]+)\sis\s([A-Za-z]+)\./?$/
 Why is \1 \2?/
;
Simplifying Regular Expressions

Regex’s describe sets:
- Union is commutative: \(\alpha \cup \beta = \beta \cup \alpha \).
- Union is associative: \((\alpha \cup \beta) \cup \gamma = \alpha \cup (\beta \cup \gamma)\).
- \(\emptyset\) is the identity for union: \(\alpha \cup \emptyset = \emptyset \cup \alpha = \alpha\).
- Union is idempotent: \(\alpha \cup \alpha = \alpha\).

Concatenation:
- Concatenation is associative: \((\alpha \beta)\gamma = \alpha(\beta \gamma)\).
- \(\varepsilon\) is the identity for concatenation: \(\alpha \varepsilon = \varepsilon \alpha = \alpha\).
- \(\emptyset\) is a zero for concatenation: \(\alpha \emptyset = \emptyset \alpha = \emptyset\).

Concatenation distributes over union:
- \((\alpha \cup \beta) \gamma = (\alpha \gamma) \cup (\beta \gamma)\).
- \(\gamma (\alpha \cup \beta) = (\gamma \alpha) \cup (\gamma \beta)\).

Kleene star:
- \(\emptyset^* = \varepsilon\).
- \(\varepsilon^* = \varepsilon\).
- \((\alpha^*)^* = \alpha^*\).
- \(\alpha^* \alpha^* = \alpha^*\).
- \((\alpha \cup \beta)^* = (\alpha^* \beta^*)^*\).