Regular Grammars

Chapter 7
Regular Grammars

A regular grammar G is a quadruple (V, Σ, R, S), where:

- V is the rule alphabet, which contains nonterminals and terminals,
- Σ (the set of terminals) is a subset of V,
- R (the set of rules) is a finite set of rules of the form: $X \rightarrow Y$,
- S (the start symbol) is a nonterminal.
Regular Grammars

In a regular grammar, all rules in R must:

- have a left hand side that is a single nonterminal

- have a right hand side that is:
 - ε, or
 - a single terminal, or
 - a single terminal followed by a single nonterminal.

Legal: $S \rightarrow a$, $S \rightarrow \varepsilon$, and $T \rightarrow aS$

Not legal: $S \rightarrow aSa$ and $aSa \rightarrow T$
Regular Grammar Example

$L = \{ w \in \{a, b\}^* : |w| \text{ is even} \} \quad ((aa) \cup (ab) \cup (ba) \cup (bb))^*$
Regular Grammar Example

\[L = \{ w \in \{a, b\}^* : |w| \text{ is even} \} \quad ((aa) \cup (ab) \cup (ba) \cup (bb))^* \]

\[
\begin{align*}
S & \rightarrow \varepsilon \\
S & \rightarrow a T \\
S & \rightarrow b T \\
T & \rightarrow a \\
T & \rightarrow b \\
T & \rightarrow a S \\
T & \rightarrow b S
\end{align*}
\]
Regular Languages and Regular Grammars

Theorem: The class of languages that can be defined with regular grammars is exactly the regular languages.

Proof: By two constructions.
Regular Languages and Regular Grammars

Regular grammar → FSM:

\[\text{grammartosm}(G = (V, \Sigma, R, S)) = \]

1. Create in \(M \) a separate state for each nonterminal in \(V \).
2. Start state is the state corresponding to \(S \).
3. If there are any rules in \(R \) of the form \(X \rightarrow w \), for some \(w \in \Sigma \), create a new state labeled \#.
4. For each rule of the form \(X \rightarrow w Y \), add a transition from \(X \) to \(Y \) labeled \(w \).
5. For each rule of the form \(X \rightarrow w \), add a transition from \(X \) to \# labeled \(w \).
6. For each rule of the form \(X \rightarrow \varepsilon \), mark state \(X \) as accepting.
7. Mark state \# as accepting.

FSM → Regular grammar: Similarly.
Example 1 - Even Length Strings

\[
\begin{align*}
S & \rightarrow \varepsilon \\
S & \rightarrow aT \\
S & \rightarrow bT \\
T & \rightarrow a \\
T & \rightarrow b \\
T & \rightarrow aS \\
T & \rightarrow bS
\end{align*}
\]
Strings that End with $aaaa$

$L = \{w \in \{a, b\}^* : w$ ends with the pattern $aaaa\}$.

\[
\begin{align*}
S & \rightarrow aS \\
S & \rightarrow bS \\
S & \rightarrow aB \\
B & \rightarrow aC \\
C & \rightarrow aD \\
D & \rightarrow a
\end{align*}
\]
Strings that End with aaaa

$L = \{ w \in \{a, b\}^* : w \text{ ends with the pattern aaaa} \}.$

\[
\begin{align*}
S & \rightarrow aS \\
S & \rightarrow bS \\
S & \rightarrow aB \\
B & \rightarrow aC \\
C & \rightarrow aD \\
D & \rightarrow a
\end{align*}
\]
Example 2 – One Character Missing

$S \rightarrow \varepsilon$
$S \rightarrow aB$
$S \rightarrow aC$
$S \rightarrow bA$
$S \rightarrow bC$
$S \rightarrow cA$
$S \rightarrow cB$

$A \rightarrow bA$
$A \rightarrow cA$
$A \rightarrow \varepsilon$
$B \rightarrow aB$
$B \rightarrow cB$
$B \rightarrow \varepsilon$

$C \rightarrow aC$
$C \rightarrow bC$
$C \rightarrow \varepsilon$