Decidability of Languages That Do Not Ask Questions about Turing Machines

Chapter 22
Undecidable Languages That Do Not Ask Questions About TMs

- Diophantine Equations, Hilbert’s 10th Problem
- Post Correspondence Problem
- Tiling problems
- Logical theories
- Context-free languages
Hilbert’s 10th Problem

A Diophantine system is a system of Diophantine equations such as:

\[4x^3 + 7xy + 2z^2 - 23x^4z = 0 \]

The problem: given a Diophantine system, does it have an integer solution?

Or, let Tenth = \{ <w> : w is a Diophantine system with an integer solution \}.

Is Tenth in D?

Restricted Diophantine Problems

Suppose all exponents are 1:

A farmer buys 100 animals for $100.00. The animals include at least one cow, one pig, and one chicken, but no other kind. If a cow costs $10.00, a pig costs $3.00, and a chicken costs $0.50, how many of each did he buy?

- Diophantine problems of degree 1 and Diophantine problems of a single variable of the form $ax^k = c$ are efficiently solvable.

- The quadratic Diophantine problem is NP-complete.

- The general Diophantine problem is undecidable, so not even an inefficient algorithm for it exists.
Post Correspondence Problem

Consider two equal length, finite lists, \(X \) and \(Y \), of strings over some alphabet \(\Sigma \):

\[
X = x_1, x_2, x_3, \ldots, x_n \\
Y = y_1, y_2, y_3, \ldots, y_n
\]

Does there exist some finite sequence of integers that can be viewed as indexes of \(X \) and \(Y \) such that, when elements of \(A \) are selected as specified and concatenated together, we get the same string that we get when elements of \(Y \) are also concatenated together as specified?

For example, if we assert that \(1, 3, 4 \) is such a sequence, we’re asserting that \(x_1x_3x_4 = y_1y_3y_4 \).
A PCP Instance With a Simple Solution

<table>
<thead>
<tr>
<th>i</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>aab</td>
</tr>
<tr>
<td>2</td>
<td>abb</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>aba</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>baaa</td>
<td>baba</td>
</tr>
</tbody>
</table>
A PCP Instance With a Simple Solution

<table>
<thead>
<tr>
<th>i</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>aab</td>
</tr>
<tr>
<td>2</td>
<td>abb</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>aba</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>baaa</td>
<td>baba</td>
</tr>
</tbody>
</table>

Solution: 3, 4, 1
Another PCP Instance

<table>
<thead>
<tr>
<th>i</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>011</td>
</tr>
<tr>
<td>2</td>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>001</td>
<td>110</td>
</tr>
</tbody>
</table>
A PCP Instance With No Simple Solution

<table>
<thead>
<tr>
<th>i</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1101</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0110</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>110</td>
</tr>
</tbody>
</table>
A PCP Instance With No Simple Solution

<table>
<thead>
<tr>
<th>i</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1101</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0110</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>110</td>
</tr>
</tbody>
</table>

Shortest solution has length 252.

http://web.cs.ualberta.ca/~zhao/PCP/intro.htm
The Language PCP

\[<P> = (x_1, x_2, x_3, \ldots, x_n)(y_1, y_2, y_3, \ldots, y_n) \]

The problem of determining whether a particular instance \(P \) of the Post Correspondence Problem has a solution can be recast as the problem of deciding the language:

\[\text{PCP} = \{<P> : P \text{ has a solution}\} \]

The language PCP is in SD/D.
A Tiling Problem

Given a finite set T of tiles of the form:

Is it possible to tile an arbitrary surface in the plane?
A Set of Tiles That Cannot Tile the Plane
Is the Tiling Language in D?

We can represent any set of tiles as a string. For example, we could represent

\[
\begin{array}{cccc}
G & W & W & W \\
\hline
W & W & B & G \\
B & G & G & W
\end{array}
\]

as \(<T> = (G \ W \ W \ W) (W \ W \ B \ G) (B \ G \ G \ W)\).

Let TILES = \(<T>\): every finite surface on the plane can be tiled, according to the rules, with the tile set \(T\).

Wang’s conjecture: If a given set of tiles can be used to tile an arbitrary surface, then it can always do so periodically. In other words, there must exist a finite area that can be tiled and then repeated infinitely often to cover any desired surface.

But Wang’s conjecture is false.
Is the Tiling Language in D?

Theorem: \(\neg TILES \) is in SD.

Proof: Lexicographically enumerate partial solutions.
The Undecidability of the Tiling Language

Theorem: TILES is not in D or SD.

Proof: If TILES were in SD, then, it would be in D.

But we show that it is not by reduction from $\neg H_\varepsilon$. We map an arbitrary Turing machine M into a set of tiles T:

- Each row of tiles corresponds to a configuration of M.
- The first row corresponds to M’s initial configuration when started on a blank tape.
- The next row corresponds to M’s next configuration, and so forth.
- There is always a next configuration of M and thus a next row in the tiling iff M does not halt.
- T is in TILES iff there is always a next row.
- So if it were possible to semidecide whether T is in TILES it would be possible to semidecide whether M fails to halt on ε. But $\neg H_\varepsilon$ is not in SD. So neither is TILES.
The Entscheidungsproblem, Again

Does there exist an algorithm to determine, given a statement in a logical language, whether or not it is a theorem?

Suppose the answer, for a sufficiently powerful logical language, is yes. Then we could:

- Decide whether other programs are correct.
- Determine whether a plan for controlling a manufacturing robot is correct.
- Find an interpretation that makes sense for a complex English sentence.
Boolean Logic

All of the following languages are in D:

- $\text{VALID} = \{ w : w \text{ is a wff in Boolean logic and } w \text{ is valid} \}$.
- $\text{SAT} = \{ w : w \text{ is a wff in Boolean logic and } w \text{ is satisfiable} \}$.
- $\text{PROVABLE} = \{ <A, w> : w \text{ is a wff in Boolean logic, } A \text{ is a set of axioms in Boolean logic and } w \text{ is provable from } A \}$.
First-Order Logic

\(FOL_{\text{theorem}} = \{ <A, w> : A \text{ is a decidable set of axioms in first-order logic, } w \text{ is a sentence in first-order logic, and } w \text{ is entailed by } A \} \).

Example:

\[\forall x \ (\text{bear}(x) \rightarrow \text{mammal}(x)) \]

\text{bear}(\text{Smoky})

\text{?mammal(}\text{Smoky})
First-Order Logic

FOL_{theorem} is semidecidable:

$proveFOL(A, w) =$
1. Lexicographically enumerate sound proofs.
2. Check each proof as it is created. If it succeeds in proving w, halt and accept.

By Gödel’s Completeness Theorem, we know that there exists a complete set of inference rules for first order logic.

So step 1 of $proveFOL$ can be correctly implemented.
Complete Theories are Decidable

If T is complete then, for any sentence w, either w or $\neg w$ is a theorem. So the set of theorems is decidable by:

$\text{decidecompletetheory}(A: \text{set of axioms}, w: \text{sentence}) =$

1. In parallel, use proveFOL to try to prove w and $\neg w$.
2. One of the proof attempts will eventually succeed.
 If the attempt to prove w succeeded, then return $True$. If the attempt to prove $\neg w$ succeeded, then return $False$.

But we must also consider the case in which T is not complete. Now it is possible that neither w nor $\neg w$ is a theorem.
First-Order Logic is Not Decidable

We reduce $H_\varepsilon = \{<M> : M \text{ halts on } \varepsilon\}$ to FOL_{theorem}:

$$R(<M>) =$$
1. From $<M>$, construct a sentence F in the language of Peano arithmetic, such that F is a theorem of Peano arithmetic iff M halts on ε.
2. Let P be the axioms of Peano arithmetic. Return $<P, F>$.

If Oracle exists, $C = Oracle(R(<M, w>))$ decides H_ε:
- R exists (as shown by Turing) and is correct:
 - $<M> \in H_\varepsilon$: M halts on ε. F is a theorem of Peano arithmetic. Oracle accepts.
 - $<M> \notin H_\varepsilon$: M does not halt on ε. F is not a theorem of Peano arithmetic. Oracle rejects.

But no machine to decide H_ε can exist, so neither does Oracle.
Example – The Legal System

We want a system such that:

- All allowable actions are legal and all unallowable actions are not legal.

- It is possible to answer the question, “Given an action A, is A legal?”

- The set of laws is consistent. (No action can be shown to be both legal and illegal.)

- The set of laws is finite and reasonably maintainable. So, for example, we must reject any system that requires a separate law, for each specific citizen, mandating that that citizen pay taxes.
The Legal System

Can we use Boolean logic?

Can we find a complete and consistent first-order system?
1. Given a CFL L and a string s, is $s \in L$?
2. Given a CFL L, is $L = \emptyset$?
3. Given a CFL L, is $L = \Sigma^*$?
4. Given CFLs L_1 and L_2, is $L_1 = L_2$?
5. Given CFLs L_1 and L_2, is $L_1 \subseteq L_2$?
6. Given a CFL L, is $\neg L$ context-free?
7. Given a CFL L, is L regular?
8. Given two CFLs L_1 and L_2, is $L_1 \cap L_2 = \emptyset$?
9. Given a CFL L, is L inherently ambiguous?
10. Given PDAs M_1 and M_2, is M_2 a minimization of M_1?
11. Given a CFG G, is G ambiguous?
Reduction via Computation History

A configuration of a TM M is a 4 tuple:
(M’s current state,
the nonblank portion of the tape before the read head,
the character under the read head,
the nonblank portion of the tape after the read head).

A computation of M is a sequence of configurations:
C_0, C_1, …, C_n for some $n \geq 0$ such that:

- C_0 is the initial configuration of M,
- C_n is a halting configuration of M, and:
- $C_0 \ |-_M\ C_1 \ |-_M\ C_2 \ |-_M\ …\ |-_M\ C_n$.
Computation Histories

A *computation history* encodes a computation:

\[(s, \varepsilon, \square, x)(q_1, \varepsilon, a, z)(\ldots)(\ldots)(q_n, r, s, t),\]

where \(q_n \in H_M\).

Example:

\[(s, \varepsilon, \square, x)\]
\[\ldots\]
\[(q_1, aaabbbbaa, a, bbbbcccc)\]
\[(q_2, aaabbbbaaa, b, bbbccc)\]
\[\ldots\]
$\text{CFG}_{\text{ALL}} = \{ <G> : G \text{ is a cfg and } L(G) = \Sigma^* \}$ is not in D

We show that CFG_{ALL} is not in D by reduction from H:

R will build G to generate the language $L#$ composed of:

- all strings in Σ^*,
- except any that represent a computation history of M on w.

Then:

- If M does not halt on w, there are no computation histories of M on w so G generates Σ^* and Oracle will accept.

- If there exists a computation history of M on w, there will be a string that G will not generate; Oracle will reject.
But:

- If M does not halt on w, there are no computation histories of M on w so G generates Σ^* and Oracle will accept.

- If there exists a computation history of M on w, there will be a string that G will not generate; Oracle will reject.

Oracle gets it backwards, so R must invert its response.

It is easier for R to build a PDA than a grammar.

So R will first build a PDA P, then convert P to a grammar.
Computation Histories as Strings

For a string s to be a computation history of M on w:

1. It must be a syntactically valid computation history.

2. C_0 must correspond to M being in its start state, with w on the tape, and with the read head positioned just to the left of w.

3. The last configuration must be a halting configuration.

4. Each configuration after C_0 must be derivable from the previous one according to the rules in δ_M.
How to test (4), that each configuration after C_0 must be derivable from the previous one according to the rules in δ_M?

$$(q_1, \text{aaaa}, b, \text{aaaa})(q_2, \text{aaa}, a, \text{baaaa}). \text{ Okay.}$$

$$(q_1, \text{aaaa}, b, \text{aaaa})(q_2, \text{bbbb}, a, \text{bbbb}). \text{ Not okay.}$$

P will have to use its stack to record the first configuration and then compare it to the second. But what’s wrong?
The Boustrophedon Version

Write every other configuration backwards.

Let $B\#$ be the language of computation histories of M except in boustrophedon form.

- A boustrophedon example
- Generating boustrophedon text
The Boustrophedon Version

\(R(<M, w>) = \)
1. Construct \(<P>\), where \(P \) accepts all strings in \(B\# \).
2. From \(P \), construct a grammar \(G \) that generates \(L(P) \).
3. Return \(<G>\).

If \(Oracle \) exists, then \(C = \neg Oracle(R(<M, w>)) \) decides \(H \):

- \(<M, w> \in H \): \(M \) halts on \(w \). There exists a computation history of \(M \) on \(w \). So there is a string that \(G \) does not generate. \(Oracle \) rejects. \(R \) accepts.
- \(<M, w> \notin H \): \(M \) does not halt on \(\varepsilon \), so there exists no computation history of \(M \) on \(w \). \(G \) generates \(\Sigma^* \). \(Oracle \) accepts. \(R \) rejects.

But no machine to decide \(H \) can exist, so neither does \(Oracle \).
$\text{GG}_= = \{<G_1, G_2> : G_1 \text{ and } G_2 \text{ are cfgs, } L(G_1) = L(G_2)\}$

Proof by reduction from: $\text{CFG}_\text{ALL} = \{<G> : L(G) = \Sigma^*\}$:

R is a reduction from CFG_ALL to $\text{GG}_= \text{ defined as follows:}$

$R(<M>) =$

1. Construct the description $<G#>$ of a new grammar $G#$ that generates Σ^*.
2. Return $<G#, G>$.

If Oracle exists, then $C = \text{Oracle}(R(<M>))$ decides CFG_ALL:

- R is correct:
 - $<G> \in \text{CFG}_\text{ALL}$: G is equivalent to $G#$, which generates everything. Oracle accepts.
 - $<G> \notin \text{CFG}_\text{ALL}$: G is not equivalent to $G#$, which generates everything. Oracle rejects.

But no machine to decide CFG_ALL can exist, so neither does Oracle.
PDA_{MIN} = \{<M_1, M_2>: M_2 \text{ is a minimization of } M_1\} \text{ is undecidable.}

Recall that \(M_2 \) is a minimization of \(M_1 \) iff:

\((L(M_1) = L(M_2)) \land M_2 \text{ is minimal.}\)

\(R(<G>) \) is a reduction from CFG_{ALL} to PDA_{MIN}:

1. Invoke \(CFGtoPDA_{topdown}(G) \) to construct the description \(<P> \) of a PDA that accepts the language that \(G \) generates.

2. Write \(<P#> : P# \text{ is a PDA with a single state } s \text{ that is both the start state and an accepting state. Make a transition from } s \text{ back to itself on each input symbol. Never push anything onto the stack. } L(P#) = \Sigma^* \text{ and } P# \text{ is minimal.} \)

3. Return \(<P, P#> \).

If \(\text{Oracle} \) exists, then \(C = \text{Oracle}((<G>)) \) decides CFG_{ALL}:

- \(<G> \in \text{CFG}_{ALL} : L(G) = \Sigma^* \). So \(L(P) = \Sigma^* \). Since \(L(P#) = \Sigma^* \), \(L(P) = L(P#) \). And \(P# \) is minimal. Thus \(P# \) is a minimization of \(P \). \(\text{Oracle} \) accepts.

- \(<G> \notin \text{CFG}_{ALL} : L(G) \neq \Sigma^* \). So \(L(P) \neq \Sigma^* \). But \(L(P#) = \Sigma^* \). So \(L(P) \neq L(P#) \). So \(\text{Oracle} \) rejects.

No machine to decide CFG_{ALL} can exist, so neither does \(\text{Oracle} \).
Reductions from PCP

\[\langle P \rangle = (x_1, x_2, x_3, \ldots, x_n)(y_1, y_2, y_3, \ldots, y_n), \]
where \(\forall j \ (x_j \in \Sigma^+ \text{ and } y_j \in \Sigma^+) \)

Example:

<table>
<thead>
<tr>
<th>i</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>bab</td>
</tr>
<tr>
<td>2</td>
<td>abb</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>aba</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>bbaaa</td>
<td>babaaa</td>
</tr>
</tbody>
</table>

\((b, abb, aba, bbaaa)(bab, b, a, babaaa)\).
From PCP to Grammar

\[G_x: \quad S_x \rightarrow bS_x1 \]
\[S_x \rightarrow b1 \]
\[S_x \rightarrow babbbS_x2 \]
\[S_x \rightarrow babbb2 \]

\[S_x \rightarrow baS_x3 \]
\[S_x \rightarrow ba3 \]

\[G_y: \quad S_y \rightarrow bbbS_y1 \]
\[S_y \rightarrow bbb1 \]
\[S_y \rightarrow baS_y2 \]
\[S_y \rightarrow ba2 \]
\[S_y \rightarrow aS_y3 \]
\[S_y \rightarrow a3 \]

\[G_x \text{ could generate:} \]

b babbb ba babbb 2 3 2 1
\{\langle G_1, G_2 \rangle : L(G_1) \cap L(G_2) = \emptyset \}\}

PCP = \{\langle P \rangle : P \text{ has a solution}\}

\[R \]

(?Oracle) \quad L_2 = \{\langle G_1, G_2 \rangle : L(G_1) \cap L(G_2) = \emptyset \}\}

\[R(\langle P \rangle) = \]
1. From \(P \) construct \(G_x \) and \(G_y \).
2. Return \(\langle G_x, G_y \rangle \).

If Oracle exists, then \(C = \neg \text{Oracle}(R(\langle P \rangle)) \) decides PCP:
- \(\langle P \rangle \in \text{PCP}: P \) has at least one solution. So both \(G_x \) and \(G_y \) will generate some string:
 \(w(i_1, i_2, \ldots i_k)R, \) where \(w = x_{i_1}x_{i_2}\ldots x_{i_k} = y_{i_1}y_{i_2}\ldots y_{i_k} \).
 So \(L(G_1) \cap L(G_2) \neq \emptyset \). Oracle rejects, so \(C \) accepts.
- \(\langle P \rangle \notin \text{PCP}: P \) has no solution. So there is no string that can be generated by both \(G_x \) and \(G_y \). So \(L(G_1) \cap L(G_2) = \emptyset \). Oracle accepts, so \(C \) rejects.

But no machine to decide PCP can exist, so neither does Oracle.
CFG_{UNAMBIG} = \{<G> : G is a CFG and G is ambiguous\}

\[PCP = \{<P> : P has a solution\} \]

\[R \]

(Oracle)

\[\text{CFG}_{UNAMBIG} = \{<G> : G is ambiguous\} \]

\[R(<P>) = \]

1. From \(P \) construct \(G_x \) and \(G_y \).
2. Construct \(G \) as follows:
 2.1. Add to \(G \) all the rules of both \(G_x \) and \(G_y \).
 2.2. Add \(S \) and the two rules \(S \rightarrow S_x \) and \(S \rightarrow S_y \).
3. Return \(<G> \).

\(G \) generates \(L(G_1) \cup L(G_2) \) by generating all the derivations that \(G_1 \) can produce plus all the ones that \(G_2 \) can produce, except that each has a prepended:

\[S \rightarrow S_x \text{ or } S \rightarrow S_y. \]
\(CFG_{UNAMBIG} = \{\langle G \rangle : G \text{ is a CFG and } G \text{ is ambiguous}\} \)

\(R(<P>) = \)
1. From \(P \) construct \(G_x \) and \(G_y \).
2. Construct \(G \) as follows:
 2.1. Add to \(G \) all the rules of both \(G_x \) and \(G_y \).
 2.2. Add \(S \) and the two rules \(S \rightarrow S_x \) and \(S \rightarrow S_y \).
3. Return \(<G> \).

If \(Oracle \) exists, then \(C = Oracle(R(<P>)) \) decides PCP:
- \(<P> \in \text{PCP}: P \) has a solution. Both \(G_x \) and \(G_y \) generate some string:
 \(w(i_1, i_2, \ldots i_k)^R, \) where \(w = x_{i_1}x_{i_2}\ldots x_{i_k} = y_{i_1}yx_{i_2}\ldots y_{i_k} \).
 So \(G \) can generate that string in two different ways. \(G \) is ambiguous. \(Oracle \) accepts.
- \(<P> \notin \text{PCP}: P \) has no solution. No string can be generated by both \(G_x \) and \(G_y \). Since both \(G_x \) and \(G_y \) are unambiguous, so is \(G \). \(Oracle \) rejects.

But no machine to decide PCP can exist, so neither does \(Oracle \).