Chapter 5
Internal Memory
Figure 5.1 Memory Cell Operation
<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Category</th>
<th>Erasure</th>
<th>Write Mechanism</th>
<th>Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random-access memory (RAM)</td>
<td>Read-write memory</td>
<td>Electrically, byte-level</td>
<td>Electrically</td>
<td>Volatile</td>
</tr>
<tr>
<td>Read-only memory (ROM)</td>
<td>Read-only memory</td>
<td>Not possible</td>
<td>Masks</td>
<td></td>
</tr>
<tr>
<td>Programmable ROM (PROM)</td>
<td>Read-only memory</td>
<td>UV light, chip-level</td>
<td>Electrically</td>
<td>Nonvolatile</td>
</tr>
<tr>
<td>Erasable PROM (EPROM)</td>
<td>Read-mostly memory</td>
<td>Electrically, byte-level</td>
<td>Electrically</td>
<td></td>
</tr>
<tr>
<td>Electrically Erasable PROM (EEPROM)</td>
<td>Read-mostly memory</td>
<td>Electrically, block-level</td>
<td>Electrically</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1

Semiconductor Memory Types

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
Dynamic RAM (DRAM)

- RAM technology is divided into two technologies:
 - Dynamic RAM (DRAM)
 - Static RAM (SRAM)

- **DRAM**
 - Made with cells that store data as charge on capacitors
 - Presence or absence of charge in a capacitor is interpreted as a binary 1 or 0
 - Requires periodic charge refreshing to maintain data storage
 - The term *dynamic* refers to tendency of the stored charge to leak away, even with power continuously applied
Figure 5.2 Typical Memory Cell Structures

(a) Dynamic RAM (DRAM) cell

(b) Static RAM (SRAM) cell
Static RAM (SRAM)

- Digital device that uses the same logic elements used in the processor
- Binary values are stored using traditional flip-flop logic gate configurations
- Will hold its data as long as power is supplied to it
SRAM versus DRAM

- Both volatile
 - Power must be continuously supplied to the memory to preserve the bit values

- Dynamic cell
 - Simpler to build, smaller
 - More dense (smaller cells = more cells per unit area)
 - Less expensive
 - Requires the supporting refresh circuitry
 - Tend to be favored for large memory requirements
 - Used for main memory

- Static
 - Faster
 - Used for cache memory (both on and off chip)
Read Only Memory (ROM)

- Contains a permanent pattern of data that cannot be changed or added to
- No power source is required to maintain the bit values in memory
- Data or program is permanently in main memory and never needs to be loaded from a secondary storage device
- Data is actually wired into the chip as part of the fabrication process
 - Disadvantages of this:
 - No room for error, if one bit is wrong the whole batch of ROMs must be thrown out
 - Data insertion step includes a relatively large fixed cost
Programmable ROM (PROM)

- Less expensive alternative
- Nonvolatile and may be written into only once
- Writing process is performed electrically and may be performed by supplier or customer at a time later than the original chip fabrication
- Special equipment is required for the writing process
- Provides flexibility and convenience
- Attractive for high volume production runs
Read-Mostly Memory

EPROM
- Erasable programmable read-only memory
- Erasure process can be performed repeatedly
- More expensive than PROM but it has the advantage of the multiple update capability

EEPROM
- Electrically erasable programmable read-only memory
- Can be written into at any time without erasing prior contents
- Combines the advantage of non-volatility with the flexibility of being updatable in place
- More expensive than EPROM

Flash Memory
- Intermediate between PROM and EEPROM in both cost and functionality
- Uses an electrical erasing technology, does not provide byte-level erasure
- Microchip is organized so that a section of memory cells are erased in a single action or “flash”
Figure 5.3 Typical 16 Megabit DRAM (4M × 4)
Figure 5.4 Typical Memory Package Pins and Signals

(a) 8 Mbit EPROM

(b) 16 Mbit DRAM

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
Figure 5.5 256-KByte Memory Organization
Figure 5.6 1-Mbyte Memory Organization
Interleaved Memory

Composed of a collection of DRAM chips

Grouped together to form a memory bank

Each bank is independently able to service a memory read or write request

K banks can service K requests simultaneously, increasing memory read or write rates by a factor of K

If consecutive words of memory are stored in different banks, the transfer of a block of memory is speeded up
Error Correction

- **Hard Failure**
 - Permanent physical defect
 - Memory cell or cells affected cannot reliably store data but become stuck at 0 or 1 or switch erratically between 0 and 1
 - Can be caused by:
 - Harsh environmental abuse
 - Manufacturing defects
 - Wear

- **Soft Error**
 - Random, non-destructive event that alters the contents of one or more memory cells
 - No permanent damage to memory
 - Can be caused by:
 - Power supply problems
 - Alpha particles
Figure 5.7 Error-Correcting Code Function
Figure 5.8 Hamming Error-Correcting Code
<table>
<thead>
<tr>
<th>Data Bits</th>
<th>Check Bits</th>
<th>% Increase</th>
<th>Check Bits</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>50</td>
<td>5</td>
<td>62.5</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>31.25</td>
<td>6</td>
<td>37.5</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>18.75</td>
<td>7</td>
<td>21.875</td>
</tr>
<tr>
<td>64</td>
<td>7</td>
<td>10.94</td>
<td>8</td>
<td>12.5</td>
</tr>
<tr>
<td>128</td>
<td>8</td>
<td>6.25</td>
<td>9</td>
<td>7.03</td>
</tr>
<tr>
<td>256</td>
<td>9</td>
<td>3.52</td>
<td>10</td>
<td>3.91</td>
</tr>
</tbody>
</table>

Table 5.2
Increase in Word Length with Error Correction
<table>
<thead>
<tr>
<th>Bit Position</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Number</td>
<td>1100</td>
<td>1011</td>
<td>1010</td>
<td>1001</td>
<td>1000</td>
<td>0111</td>
<td>0110</td>
<td>0101</td>
<td>0100</td>
<td>0011</td>
<td>0010</td>
<td>0001</td>
</tr>
<tr>
<td>Data Bit</td>
<td>D8</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check Bit</td>
<td></td>
<td></td>
<td></td>
<td>C8</td>
<td></td>
<td></td>
<td>C4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C1</td>
</tr>
</tbody>
</table>

Figure 5.9 Layout of Data Bits and Check Bits
<table>
<thead>
<tr>
<th>Bit position</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position number</td>
<td>1100</td>
<td>1011</td>
<td>1010</td>
<td>1001</td>
<td>1000</td>
<td>0111</td>
<td>0110</td>
<td>0101</td>
<td>0100</td>
<td>0011</td>
<td>0010</td>
<td>0001</td>
</tr>
<tr>
<td>Data bit</td>
<td>D8</td>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C8</td>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td></td>
<td>C2</td>
<td>C1</td>
</tr>
<tr>
<td>Word stored as</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Word fetched as</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Position Number</td>
<td>1100</td>
<td>1011</td>
<td>1010</td>
<td>1001</td>
<td>1000</td>
<td>0111</td>
<td>0110</td>
<td>0101</td>
<td>0100</td>
<td>0011</td>
<td>0010</td>
<td>0001</td>
</tr>
<tr>
<td>Check Bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 5.10 Check Bit Calculation
Figure 5.11 Hamming SEC-DED Code
One of the most critical system bottlenecks when using high-performance processors is the interface to main internal memory.

The traditional DRAM chip is constrained both by its internal architecture and by its interface to the processor’s memory bus.

A number of enhancements to the basic DRAM architecture have been explored.

- The schemes that currently dominate the market are SDRAM and DDR-DRAM.
Synchronous DRAM (SDRAM)

One of the most widely used forms of DRAM

Exchanges data with the processor synchronized to an external clock signal and running at the full speed of the processor/memory bus without imposing wait states

With synchronous access the DRAM moves data in and out under control of the system clock

- The processor or other master issues the instruction and address information which is latched by the DRAM
- The DRAM then responds after a set number of clock cycles
- Meanwhile the master can safely do other tasks while the SDRAM is processing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
Figure 5.12 256-Mb Synchronous Dynamic RAM (SDRAM)
<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 to A12</td>
<td>Address inputs</td>
</tr>
<tr>
<td>BA0, BA1</td>
<td>Bank address lines</td>
</tr>
<tr>
<td>CLK</td>
<td>Clock input</td>
</tr>
<tr>
<td>CKE</td>
<td>Clock enable</td>
</tr>
<tr>
<td>CS</td>
<td>Chip select</td>
</tr>
<tr>
<td>RAS</td>
<td>Row address strobe</td>
</tr>
<tr>
<td>CAS</td>
<td>Column address strobe</td>
</tr>
<tr>
<td>WE</td>
<td>Write enable</td>
</tr>
<tr>
<td>DQ0 to DQ15</td>
<td>Data input/output</td>
</tr>
<tr>
<td>DQM</td>
<td>Data mask</td>
</tr>
</tbody>
</table>

Table 5.3
SDRAM Pin Assignments
Figure 5.13 SDRAM Read Timing (Burst Length = 4, CAS latency = 2)
Double Data Rate SDRAM (DDR SDRAM)

- Developed by the JEDEC Solid State Technology Association (Electronic Industries Alliance’s semiconductor-engineering-standardization body)

- Numerous companies make DDR chips, which are widely used in desktop computers and servers

- DDR achieves higher data rates in three ways:
 - First, the data transfer is synchronized to both the rising and falling edge of the clock, rather than just the rising edge
 - Second, DDR uses higher clock rate on the bus to increase the transfer rate
 - Third, a buffering scheme is used
Table 5.4
DDR Characteristics

<table>
<thead>
<tr>
<th>Prefetch buffer (bits)</th>
<th>DDR1</th>
<th>DDR2</th>
<th>DDR3</th>
<th>DDR4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Voltage level (V)</td>
<td>2.5</td>
<td>1.8</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Front side bus data rates (Mbps)</td>
<td>200—400</td>
<td>400—1066</td>
<td>800—2133</td>
<td>2133—4266</td>
</tr>
</tbody>
</table>
Figure 5.14 DDR Generations

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
Flash Memory

- Used both for internal memory and external memory applications
- First introduced in the mid-1980’s
- Is intermediate between EPROM and EEPROM in both cost and functionality
- Uses an electrical erasing technology like EEPROM
- It is possible to erase just blocks of memory rather than an entire chip
- Gets its name because the microchip is organized so that a section of memory cells are erased in a single action
- Does not provide byte-level erasure
- Uses only one transistor per bit so it achieves the high density of EPROM
Figure 5.15 Flash Memory Operation

(a) Transistor structure

(b) Flash memory cell in one state

(c) Flash memory cell in zero state
Figure 5.16 Flash Memory Structures

(a) NOR flash structure

(b) NAND flash structure
Figure 5.17 Kiviat Graphs for Flash Memory
Figure 5.18 Nonvolatile RAM within the Memory Hierarchy

Increasing performance and endurance

Decreasing cost per bit, increasing capacity or density

SRAM
STT-RAM
PCRAM
ReRAM

NAND FLASH
DRAM
HARD DISK

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
Figure 5.19 Nonvolatile RAM Technologies

(a) STT-RAM

(b) PCRAM

(c) ReRAM

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
Summary

Chapter 5

- Semiconductor main memory
 - Organization
 - DRAM and SRAM
 - Types of ROM
 - Chip logic
 - Chip packaging
 - Module organization
 - Interleaved memory
- Error correction

- DDR DRAM
 - Synchronous DRAM
 - DDR SDRAM

- Flash memory
 - Operation
 - NOR and NAND flash memory

- Newer nonvolatile solid-state memory technologies

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.