
CSC111	Computer	Science	II	
Lab	2	–	Getting	to	know	Linux	

Introduction	
The purpose of this lab is to introduce you to the command line interface in Linux.

Getting	started	

In	our	labs	
If you are in one of our labs, you just have to use your CS credentials to log into the machine in front of
you. You can reset your CS account password reset on
https://web.engr.ship.edu/for-students/password-reset-request/

In	Windows/Mac	
Getting to our servers from your Windows or Mac machine just take a few steps.

How to set up 2FA:
https://web.engr.ship.edu/for-students/essential-software/mfa-for-ssh-servers/

You need a program to connect to our server (sloop.cs.ship.edu or clipper.cs.ship.edu). Linux or Mac
users can use Terminal and connect to the server as follows:
ssh userid@sloop.cs.ship.edu
It will ask you for your password and then you will be in.

Windows users can use Windows PowerShell and connect to the server as follows:
ssh userid@sloop.cs.ship.edu
It will ask you for your password and then you will be in.

Directories	&	Files	
In Linux, the things you called “folders” in Windows are called “directories” and you are always “in” a
directory (which is called your “working directory”). That means that, unless you specify otherwise,
linux will expect the files that you reference are in that directory.

Working	directory	
When you first log into the system, you start in your home directory – in other words, your home
directory is your working directory. You can see what directory you are in by entering the pwd (print
working directory) command. When you first log in, pwd should return something that looks like:

/home/userid

That is the path that is your home directory, but there isn’t any reason that you need to memorize that.
Fortunately, you can always use ~ to reference your home directory.

You can create directories with the mkdir command. Let’s suppose that you want to create a directory
to hold all of the stuff for this class. You can create that directory (within your current working
directory) by entering

mkdir spring2024

Once you have created a directory, you can make it be your working directory (which is often referred to
a “going into it” using the cd (change directory) command. Move into the directory you just created by
entering

cd spring2024

Use the pwd command to see that your working directory has been changed.

You can always get back to your home directory by typing

cd

to move back to your home directory and verify where you are with the pwd command.

You can nest directories like folders can be inside folders in Windows. Move into your spring2024
directory and use the mkdir command to create subfolders named csc111, labs, and lab2. Then move
into the lab2 folder.

At this point, pwd should return something like

 /userid/spring2024/csc111/labs/lab2

There are two more special folders that you need to
know about: . means the current working directory and
.. means the directory containing the current working
directory (sometimes called the parent directory). That
means, that entering

cd ..

will move you to the parent directory and doing that again will take you back to your home directory.

In review, we have learned about these special directory aliases:

Alias Meaning
~ your home directory
. the current working directory
.. the directory containing the current working

directory

This is giving you the “path” to the
directory. The first / is the topmost
directory in the system and each
subsequent section of this path is a
subdirectory.

ls	and	man	commands	
You can see all of the files in your current working directory with the ls command. ls entered by itself
will give you a list of the visible files and directories in the working directory, but there are also options
that you can put on that command. For example, it is common to enter ls –al to list the files in the
working directory. The “-al” are options on the command: the “a” means “all” (show all of the files) and
the “l” means “long listing format” which gives a lot more information about each file (file permissions,
size, date modified).

Move to your home directory and enter

ls –al

to see what files are in that directory. You may see other things, you should definitely see the csc111
directory you created earlier.

At this point, you can see that the general structure of linux commands is

<command> <options following a dash> <other arguments>

When you want to what options and arguments are valid for a command, you can enter man
<command> to see those details.

Enter man ls to see the details about the ls command. Note that hitting the q key will get you out of the
man entry.

Look at the output from that ls –al and the man entry for ls more carefully. See if you can figure out

• what the d in the first column means
• what the next 9 characters mean
• what are the units on the size of the file
• is the time stamp modification or creation

Also, compare the files/directories listed in the ls and ls –al commands to see what the “all” in the “a”
option really means.

Editors	
You need to pick an editor that you like. The obvious choices are: vim, pico, and nano. pico and nano
are simple equivalents of notepad – completely language unaware. While vi(m) will require some extra
time to learn, it is a very powerful editor. Here are some tutorials to help you play with vi(m):

vim: http://www.openvim.com/tutorial.html (except that we can use the arrow keys for movement)

To edit, lab2.c, you type

pico lab2.c or nano lab2.c or vi lab2.c

File	commands	
You can use commands to manipulate your files in linux. Use pwd and cd to put yourself in your Lab2
directory. Here are the important file commands (things in <> must be replaced with the name of the
files you are manipulating). Do each of the examples in this table and use the ls command to see its
effects.

Command Meaning Example
touch <f1> create a file with a given name touch foo
cp <f1> <f2> copy a file from one place to

another
cp foo fee

mv <f1> <f2> move a file from one place to
another

mv foo fuu

rm <f1> remove a file rm fuu

Remember the special directory aliases we covered above and figure out what these commands would
do:

cp foo ..
mv fee ..
cp foo ~
touch ../tmp
mv ../tmp .

The only thing left is to remove directories. There are two ways to do that:

rm –r <directory> will recursively remove everything in a directory (that directory, all of its files, and all
of the directories underneath it.

rmdir <directory> will remove a directory, but only if it is empty.

You need to be careful with -f option since it won’t double-check with you if you really want to
delete/remove files/directories.

Your	First	C	Program	
Using the editor you selected, edit a file named hello.c and make it contain this code:

#include <stdio.h>

int main()
{
 printf("Welcome to CS2!\n");

 return 0;
}

* C is case-sensitive.

Linux contains many tricks to make
repeating commands easier. You can
use up and down arrows to scroll
through the commands you have
entered recently. Also, you can use
the ! (which we pronounce “bang”)
to get the most recent command that
started with something. For example,
!gcc would give you the most recent
command that started with gcc

Compile this program using this command:

gcc hello.c

That will create a default executable file named a.out

that you can run using:

./a.out

Remember that the “.” means the current directory.

If you would like to specify the name of the executable file the compiler creates, you can compile with
this command:

gcc –o hello hello.c

which would name the executable file “hello” (which you can change to be whatever you like).

Standard	C	Format	in	CSC111	

/* CSC111 Computer Science II
 Lab 2 Getting to Know Linux: lab2a.c
 Programmer: Your Name
 Professor: Dr. Lee
 File Created: Jan 25, 2024
 File Updated: Jan 25, 2024
*/

#include <stdio.h>

#define N 100

int main()
{
 int i;
 i = 5; // You can also declare and assign value as int i = 5;
 printf(“Yes, this is your fantastic playground!!!\n”);
 printf(“What is N? %d\n”, N); // print out the constant N on the screen
 printf(“What is i? %d\n”, i); // print out the value of integer i on the screen
 printf(“What is N * i? %d\n”, N*i); // print out the value of N*i on the screen

 return 0;

}

When you have command line inputs:

int main(int argc, char *argv[]) OR

int main(int argc, char **argv)

integer type argc returns the number of arguments

character string argv[] has each argument in the position starting 0, 1, 2, ...

argv[0], argv[1], argv[2], etc.

/* CSC111 Computer Science II
 Lab 2 Getting to Know Linux: lab2b.c
 Programmer: Your Name
 Professor: Dr. Lee
 File Created: Jan 25, 2024
 File Updated: Jan 25, 2024
*/

#include <stdio.h>
int main(int argc, char *argv[])
{
 int i;
 printf("Input? ");
 scanf("%d", &i); // reads an integer; stores into i
 printf("Value in i? %d \n", i);

 printf("argc? %d\n", argc); // print out the value of argc
 printf("argv[0]? %s\n", argv[0]); // print out the value in argv[0]
 printf("argv[1]? %s\n", argv[1]); // print out the value in argc[1]
 printf("argv[2]? %s\n", argv[2]); // print out the value in argc[2]
 return 0;

}

How to Compile

gcc -o lab2b lab2b.c

How to Run

./lab2b What Would Be

