
Chapter 4: Expressions

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 4

Expressions

Chapter 4: Expressions

Operators
•  C emphasizes expressions rather than statements.
•  Expressions are built from variables, constants,

and operators.
•  C has a rich collection of operators, including

–  arithmetic operators
–  relational operators
–  logical operators
–  assignment operators
–  increment and decrement operators

 and many others
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 4: Expressions

Arithmetic Operators
•  C provides five binary arithmetic operators:

 + addition
 - subtraction
 * multiplication
 / division
 % remainder

•  An operator is binary if it has two operands.
•  There are also two unary arithmetic operators:

 + unary plus
 - unary minus

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 4: Expressions

Unary Arithmetic Operators
•  The unary operators require one operand:

 i = +1;
 j = -i;

•  The unary + operator does nothing. It’s used
primarily to emphasize that a numeric constant is
positive.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 4: Expressions

Binary Arithmetic Operators
•  The value of i % j is the remainder when i is

divided by j.
 10 % 3 has the value 1, and 12 % 4 has the value 0.

•  Binary arithmetic operators—with the exception
of %—allow either integer or floating-point
operands, with mixing allowed.

•  When int and float operands are mixed, the
result has type float.
 9 + 2.5f has the value 11.5, and 6.7f / 2 has the

value 3.35.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 4: Expressions

The / and % Operators
•  The / and % operators require special care:

–  When both operands are integers, / “truncates” the
result. The value of 1 / 2 is 0, not 0.5.

–  The % operator requires integer operands; if either
operand is not an integer, the program won’t compile.

–  Using zero as the right operand of either / or % causes
undefined behavior.

–  The behavior when / and % are used with negative
operands is implementation-defined in C89.

–  In C99, the result of a division is always truncated toward
zero and the value of i % j has the same sign as i.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 4: Expressions

Implementation-Defined Behavior
•  The C standard deliberately leaves parts of the

language unspecified.
•  Leaving parts of the language unspecified reflects

C’s emphasis on efficiency, which often means
matching the way that hardware behaves.

•  It’s best to avoid writing programs that depend on
implementation-defined behavior.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 4: Expressions

Operator Precedence
•  Does i + j * k mean “add i and j, then multiply

the result by k” or “multiply j and k, then add
i”?

•  One solution to this problem is to add parentheses,
writing either (i + j) * k or i + (j * k).

•  If the parentheses are omitted, C uses operator
precedence rules to determine the meaning of the
expression.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 4: Expressions

Operator Precedence
•  The arithmetic operators have the following

relative precedence:
 Highest: + - (unary)
 * / %
 Lowest: + - (binary)

•  Examples:
 i + j * k is equivalent to i + (j * k)
 -i * -j is equivalent to (-i) * (-j)
 +i + j / k is equivalent to (+i) + (j / k)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 4: Expressions

Operator Associativity
•  Associativity comes into play when an expression

contains two or more operators with equal
precedence.

•  An operator is said to be left associative if it
groups from left to right.

•  The binary arithmetic operators (*, /, %, +, and -)
are all left associative, so

 i - j – k is equivalent to (i - j) - k
 i * j / k is equivalent to (i * j) / k

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 4: Expressions

Operator Associativity
•  An operator is right associative if it groups from

right to left.
•  The unary arithmetic operators (+ and -) are both

right associative, so
 - + i is equivalent to -(+i)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 4: Expressions

Program: Computing a UPC Check Digit
•  Most goods sold in U.S. and Canadian stores are

marked with a Universal Product Code (UPC):

•  Meaning of the digits underneath the bar code:
 First digit: Type of item
 First group of five digits: Manufacturer
 Second group of five digits: Product (including package size)
 Final digit: Check digit, used to help identify an error in the
preceding digits

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 4: Expressions

Program: Computing a UPC Check Digit
•  How to compute the check digit:

 Add the first, third, fifth, seventh, ninth, and eleventh digits.
 Add the second, fourth, sixth, eighth, and tenth digits.
 Multiply the first sum by 3 and add it to the second sum.
 Subtract 1 from the total.
 Compute the remainder when the adjusted total is divided
by 10.

 Subtract the remainder from 9.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 4: Expressions

Program: Computing a UPC Check Digit
•  Example for UPC 0 13800 15173 5:

 First sum: 0 + 3 + 0 + 1 + 1 + 3 = 8.
 Second sum: 1 + 8 + 0 + 5 + 7 = 21.
 Multiplying the first sum by 3 and adding the second
yields 45.

 Subtracting 1 gives 44.
 Remainder upon dividing by 10 is 4.
 Remainder is subtracted from 9.
 Result is 5.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 4: Expressions

Program: Computing a UPC Check Digit
•  The upc.c program asks the user to enter the first

11 digits of a UPC, then displays the corresponding
check digit:

 Enter the first (single) digit: 0
 Enter first group of five digits: 13800
 Enter second group of five digits: 15173
 Check digit: 5

•  The program reads each digit group as five one-digit
numbers.

•  To read single digits, we’ll use scanf with the
%1d conversion specification.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 4: Expressions

upc.c

/* Computes a Universal Product Code check digit */

#include <stdio.h>

int main(void)
{
 int d, i1, i2, i3, i4, i5, j1, j2, j3, j4, j5,
 first_sum, second_sum, total;

 printf("Enter the first (single) digit: ");
 scanf("%1d", &d);
 printf("Enter first group of five digits: ");
 scanf("%1d%1d%1d%1d%1d", &i1, &i2, &i3, &i4, &i5);
 printf("Enter second group of five digits: ");
 scanf("%1d%1d%1d%1d%1d", &j1, &j2, &j3, &j4, &j5);
 first_sum = d + i2 + i4 + j1 + j3 + j5;
 second_sum = i1 + i3 + i5 + j2 + j4;
 total = 3 * first_sum + second_sum;

 printf("Check digit: %d\n", 9 - ((total - 1) % 10));

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 4: Expressions

Assignment Operators
•  Simple assignment: used for storing a value into a

variable
•  Compound assignment: used for updating a value

already stored in a variable

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 4: Expressions

Simple Assignment
•  The effect of the assignment v = e is to evaluate

the expression e and copy its value into v.
•  e can be a constant, a variable, or a more

complicated expression:
 i = 5; /* i is now 5 */
 j = i; /* j is now 5 */
 k = 10 * i + j; /* k is now 55 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 4: Expressions

Simple Assignment
•  If v and e don’t have the same type, then the value

of e is converted to the type of v as the assignment
takes place:

 int i;
 float f;

 i = 72.99f; /* i is now 72 */
 f = 136; /* f is now 136.0 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 4: Expressions

Simple Assignment
•  In many programming languages, assignment is a

statement; in C, however, assignment is an
operator, just like +.

•  The value of an assignment v = e is the value of v
after the assignment.
–  The value of i = 72.99f is 72 (not 72.99).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 4: Expressions

Side Effects
•  An operators that modifies one of its operands is

said to have a side effect.
•  The simple assignment operator has a side effect:

it modifies its left operand.
•  Evaluating the expression i = 0 produces the

result 0 and—as a side effect—assigns 0 to i.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 4: Expressions

Side Effects
•  Since assignment is an operator, several

assignments can be chained together:
 i = j = k = 0;

•  The = operator is right associative, so this
assignment is equivalent to

 i = (j = (k = 0));

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 4: Expressions

Side Effects
•  Watch out for unexpected results in chained

assignments as a result of type conversion:
 int i;
 float f;

 f = i = 33.3f;

•  i is assigned the value 33, then f is assigned 33.0
(not 33.3).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 4: Expressions

Side Effects
•  An assignment of the form v = e is allowed

wherever a value of type v would be permitted:
 i = 1;
 k = 1 + (j = i);
 printf("%d %d %d\n", i, j, k);
 /* prints "1 1 2" */

•  “Embedded assignments” can make programs
hard to read.

•  They can also be a source of subtle bugs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 4: Expressions

Lvalues
•  The assignment operator requires an lvalue as its

left operand.
•  An lvalue represents an object stored in computer

memory, not a constant or the result of a
computation.

•  Variables are lvalues; expressions such as 10 or
2 * i are not.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 4: Expressions

Lvalues
•  Since the assignment operator requires an lvalue

as its left operand, it’s illegal to put any other kind
of expression on the left side of an assignment
expression:

 12 = i; /*** WRONG ***/
 i + j = 0; /*** WRONG ***/
 -i = j; /*** WRONG ***/

•  The compiler will produce an error message such
as “invalid lvalue in assignment.”

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 4: Expressions

Compound Assignment
•  Assignments that use the old value of a variable to

compute its new value are common.
•  Example:
 i = i + 2;

•  Using the += compound assignment operator, we
simply write:

 i += 2; /* same as i = i + 2; */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 4: Expressions

Compound Assignment
•  There are nine other compound assignment operators,

including the following:
 -= *= /= %=

•  All compound assignment operators work in much the
same way:

 v += e adds v to e, storing the result in v
 v -= e subtracts e from v, storing the result in v
 v *= e multiplies v by e, storing the result in v
 v /= e divides v by e, storing the result in v
 v %= e computes the remainder when v is divided by e,
storing the result in v

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 4: Expressions

Compound Assignment
•  v += e isn’t “equivalent” to v = v + e.
•  One problem is operator precedence: i *= j + k

isn’t the same as i = i * j + k.
•  There are also rare cases in which v += e differs

from v = v + e because v itself has a side effect.
•  Similar remarks apply to the other compound

assignment operators.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 4: Expressions

Compound Assignment
•  When using the compound assignment operators,

be careful not to switch the two characters that
make up the operator.

•  Although i =+ j will compile, it is equivalent to
i = (+j), which merely copies the value of j
into i.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 4: Expressions

Increment and Decrement Operators
•  Two of the most common operations on a variable

are “incrementing” (adding 1) and
“decrementing” (subtracting 1):

 i = i + 1;
 j = j - 1;

•  Incrementing and decrementing can be done using
the compound assignment operators:

 i += 1;
 j -= 1;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 4: Expressions

Increment and Decrement Operators
•  C provides special ++ (increment) and --

(decrement) operators.
•  The ++ operator adds 1 to its operand. The --

operator subtracts 1.
•  The increment and decrement operators are tricky

to use:
–  They can be used as prefix operators (++i and –-i) or

postfix operators (i++ and i--).
–  They have side effects: they modify the values of their

operands.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 4: Expressions

Increment and Decrement Operators
•  Evaluating the expression ++i (a “pre-increment”)

yields i + 1 and—as a side effect—increments i:
 i = 1;
 printf("i is %d\n", ++i); /* prints "i is 2" */
 printf("i is %d\n", i); /* prints "i is 2" */

•  Evaluating the expression i++ (a “post-increment”)
produces the result i, but causes i to be
incremented afterwards:

 i = 1;
 printf("i is %d\n", i++); /* prints "i is 1" */
 printf("i is %d\n", i); /* prints "i is 2" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 4: Expressions

Increment and Decrement Operators
•  ++i means “increment i immediately,” while i+
+ means “use the old value of i for now, but
increment i later.”

•  How much later? The C standard doesn’t specify
a precise time, but it’s safe to assume that i will
be incremented before the next statement is
executed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 4: Expressions

Increment and Decrement Operators
•  The -- operator has similar properties:

 i = 1;
 printf("i is %d\n", --i); /* prints "i is 0" */
 printf("i is %d\n", i); /* prints "i is 0" */
 i = 1;
 printf("i is %d\n", i--); /* prints "i is 1" */
 printf("i is %d\n", i); /* prints "i is 0" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 4: Expressions

Increment and Decrement Operators
•  When ++ or -- is used more than once in the same

expression, the result can often be hard to understand.
•  Example:

 i = 1;
 j = 2;
 k = ++i + j++;

 The last statement is equivalent to
 i = i + 1;
 k = i + j;
 j = j + 1;

 The final values of i, j, and k are 2, 3, and 4, respectively.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 4: Expressions

Increment and Decrement Operators
•  In contrast, executing the statements

 i = 1;
 j = 2;
 k = i++ + j++;

 will give i, j, and k the values 2, 3, and 3,
respectively.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 4: Expressions

Expression Evaluation
•  Table of operators discussed so far:
Precedence Name Symbol(s) Associativity
 1 increment (postfix) ++ left

 decrement (postfix) --
 2 increment (prefix) ++ right

 decrement (prefix) --
 unary plus +
 unary minus -

 3 multiplicative * / % left
 4 additive + - left
 5 assignment = *= /= %= += -= right

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 4: Expressions

Expression Evaluation
•  The table can be used to add parentheses to an expression

that lacks them.
•  Starting with the operator with highest precedence, put

parentheses around the operator and its operands.
•  Example:

 a = b += c++ - d + --e / -f Precedence
 level
 a = b += (c++) - d + --e / -f 1
 a = b += (c++) - d + (--e) / (-f) 2
 a = b += (c++) - d + ((--e) / (-f)) 3
 a = b += (((c++) - d) + ((--e) / (-f))) 4
 (a = (b += (((c++) - d) + ((--e) / (-f))))) 5

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 4: Expressions

Order of Subexpression Evaluation
•  The value of an expression may depend on the

order in which its subexpressions are evaluated.
•  C doesn’t define the order in which

subexpressions are evaluated (with the exception
of subexpressions involving the logical and,
logical or, conditional, and comma operators).

•  In the expression (a + b) * (c - d) we don’t
know whether (a + b) will be evaluated before
(c - d).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 4: Expressions

Order of Subexpression Evaluation
•  Most expressions have the same value regardless

of the order in which their subexpressions are
evaluated.

•  However, this may not be true when a
subexpression modifies one of its operands:

 a = 5;
 c = (b = a + 2) - (a = 1);

•  The effect of executing the second statement is
undefined.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 4: Expressions

Order of Subexpression Evaluation
•  Avoid writing expressions that access the value of

a variable and also modify the variable elsewhere
in the expression.

•  Some compilers may produce a warning message
such as “operation on ‘a’ may be undefined”
when they encounter such an expression.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 4: Expressions

Order of Subexpression Evaluation
•  To prevent problems, it’s a good idea to avoid

using the assignment operators in subexpressions.
•  Instead, use a series of separate assignments:

 a = 5;
 b = a + 2;
 a = 1;
 c = b - a;

 The value of c will always be 6.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 4: Expressions

Order of Subexpression Evaluation
•  Besides the assignment operators, the only

operators that modify their operands are increment
and decrement.

•  When using these operators, be careful that an
expression doesn’t depend on a particular order of
evaluation.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 4: Expressions

Order of Subexpression Evaluation
•  Example:

 i = 2;
 j = i * i++;

•  It’s natural to assume that j is assigned 4.
However, j could just as well be assigned 6
instead:
1. The second operand (the original value of i) is fetched,

then i is incremented.
2. The first operand (the new value of i) is fetched.
3. The new and old values of i are multiplied, yielding 6.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 4: Expressions

Undefined Behavior
•  Statements such as c = (b = a + 2) - (a = 1);

and j = i * i++; cause undefined behavior.
•  Possible effects of undefined behavior:

–  The program may behave differently when compiled
with different compilers.

–  The program may not compile in the first place.
–  If it compiles it may not run.
–  If it does run, the program may crash, behave

erratically, or produce meaningless results.

•  Undefined behavior should be avoided.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 4: Expressions

Expression Statements
•  C has the unusual rule that any expression can be

used as a statement.
•  Example:
 ++i;
 i is first incremented, then the new value of i is
fetched but then discarded.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 4: Expressions

Expression Statements
•  Since its value is discarded, there’s little point in

using an expression as a statement unless the
expression has a side effect:

 i = 1; /* useful */
 i--; /* useful */
 i * j - 1; /* not useful */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 4: Expressions

Expression Statements
•  A slip of the finger can easily create a “do-

nothing” expression statement.
•  For example, instead of entering
 i = j;

 we might accidentally type
 i + j;

•  Some compilers can detect meaningless
expression statements; you’ll get a warning such
as “statement with no effect.”

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

