
Chapter 5: Selection Statements

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 5

Selection Statements

Chapter 5: Selection Statements

Statements
•  So far, we’ve used return statements and

expression statements.
•  Most of C’s remaining statements fall into three

categories:
–  Selection statements: if and switch
–  Iteration statements: while, do, and for
–  Jump statements: break, continue, and goto.

(return also belongs in this category.)
•  Other C statements:

–  Compound statement
–  Null statement

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 5: Selection Statements

Logical Expressions
•  Several of C’s statements must test the value of an

expression to see if it is “true” or “false.”
•  For example, an if statement might need to test

the expression i < j; a true value would indicate
that i is less than j.

•  In many programming languages, an expression
such as i < j would have a special “Boolean” or
“logical” type.

•  In C, a comparison such as i < j yields an
integer: either 0 (false) or 1 (true).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 5: Selection Statements

Relational Operators
•  C’s relational operators:
 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to

•  These operators produce 0 (false) or 1 (true) when
used in expressions.

•  The relational operators can be used to compare
integers and floating-point numbers, with
operands of mixed types allowed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 5: Selection Statements

Relational Operators
•  The precedence of the relational operators is lower

than that of the arithmetic operators.
–  For example, i + j < k - 1 means (i + j) < (k - 1).

•  The relational operators are left associative.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 5: Selection Statements

Relational Operators
•  The expression
 i < j < k

 is legal, but does not test whether j lies between i
and k.

•  Since the < operator is left associative, this
expression is equivalent to

 (i < j) < k

 The 1 or 0 produced by i < j is then compared to k.
•  The correct expression is i < j && j < k.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 5: Selection Statements

Equality Operators
•  C provides two equality operators:
 == equal to
 != not equal to

•  The equality operators are left associative and produce
either 0 (false) or 1 (true) as their result.

•  The equality operators have lower precedence than the
relational operators, so the expression

 i < j == j < k
 is equivalent to
 (i < j) == (j < k)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 5: Selection Statements

Logical Operators
•  More complicated logical expressions can be built

from simpler ones by using the logical operators:
 ! logical negation
 && logical and
 || logical or

•  The ! operator is unary, while && and || are
binary.

•  The logical operators produce 0 or 1 as their result.
•  The logical operators treat any nonzero operand as

a true value and any zero operand as a false value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 5: Selection Statements

Logical Operators
•  Behavior of the logical operators:

!expr has the value 1 if expr has the value 0.
expr1 && expr2 has the value 1 if the values of expr1 and

expr2 are both nonzero.
expr1 || expr2 has the value 1 if either expr1 or expr2 (or

both) has a nonzero value.
•  In all other cases, these operators produce the

value 0.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 5: Selection Statements

Logical Operators
•  Both && and || perform “short-circuit” evaluation:

they first evaluate the left operand, then the right one.
•  If the value of the expression can be deduced from the

left operand alone, the right operand isn’t evaluated.
•  Example:
 (i != 0) && (j / i > 0)

 (i != 0) is evaluated first. If i isn’t equal to 0, then
(j / i > 0) is evaluated.

•  If i is 0, the entire expression must be false, so there’s
no need to evaluate (j / i > 0). Without short-circuit
evaluation, division by zero would have occurred.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 5: Selection Statements

Logical Operators
•  Thanks to the short-circuit nature of the && and
|| operators, side effects in logical expressions
may not always occur.

•  Example:
 i > 0 && ++j > 0
 If i > 0 is false, then ++j > 0 is not evaluated, so
j isn’t incremented.

•  The problem can be fixed by changing the
condition to ++j > 0 && i > 0 or, even better, by
incrementing j separately.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 5: Selection Statements

Logical Operators
•  The ! operator has the same precedence as the

unary plus and minus operators.
•  The precedence of && and || is lower than that

of the relational and equality operators.
–  For example, i < j && k == m means (i < j) &&
(k == m).

•  The ! operator is right associative; && and ||
are left associative.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 5: Selection Statements

The if Statement
•  The if statement allows a program to choose

between two alternatives by testing an expression.
•  In its simplest form, the if statement has the form

 if (expression) statement
•  When an if statement is executed, expression is

evaluated; if its value is nonzero, statement is
executed.

•  Example:
 if (line_num == MAX_LINES)
 line_num = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 5: Selection Statements

The if Statement
•  Confusing == (equality) with = (assignment) is

perhaps the most common C programming error.
•  The statement

 if (i == 0) …
 tests whether i is equal to 0.

•  The statement
 if (i = 0) …

 assigns 0 to i, then tests whether the result is
nonzero.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 5: Selection Statements

The if Statement
•  Often the expression in an if statement will test

whether a variable falls within a range of values.
•  To test whether 0 ≤ i < n:

 if (0 <= i && i < n) …
•  To test the opposite condition (i is outside the

range):
 if (i < 0 || i >= n) …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 5: Selection Statements

Compound Statements
•  In the if statement template, notice that statement

is singular, not plural:
 if (expression) statement

•  To make an if statement control two or more
statements, use a compound statement.

•  A compound statement has the form
 { statements }

•  Putting braces around a group of statements forces
the compiler to treat it as a single statement.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 5: Selection Statements

Compound Statements
•  Example:
 { line_num = 0; page_num++; }

•  A compound statement is usually put on multiple
lines, with one statement per line:

 {
 line_num = 0;
 page_num++;
 }

•  Each inner statement still ends with a semicolon,
but the compound statement itself does not.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 5: Selection Statements

Compound Statements
•  Example of a compound statement used inside an
if statement:

 if (line_num == MAX_LINES) {
 line_num = 0;
 page_num++;
 }

•  Compound statements are also common in loops
and other places where the syntax of C requires a
single statement.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 5: Selection Statements

The else Clause
•  An if statement may have an else clause:
 if (expression) statement else statement

•  The statement that follows the word else is
executed if the expression has the value 0.

•  Example:
 if (i > j)
 max = i;
 else
 max = j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 5: Selection Statements

The else Clause
•  When an if statement contains an else clause,

where should the else be placed?
•  Many C programmers align it with the if at the

beginning of the statement.
•  Inner statements are usually indented, but if

they’re short they can be put on the same line as
the if and else:

 if (i > j) max = i;
 else max = j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 5: Selection Statements

The else Clause
•  It’s not unusual for if statements to be nested inside

other if statements:
 if (i > j)
 if (i > k)
 max = i;
 else
 max = k;
 else
 if (j > k)
 max = j;
 else
 max = k;

•  Aligning each else with the matching if makes the
nesting easier to see.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 5: Selection Statements

The else Clause
•  To avoid confusion, don’t hesitate to add braces:
 if (i > j) {
 if (i > k)
 max = i;
 else
 max = k;
 } else {
 if (j > k)
 max = j;
 else
 max = k;
 }

 Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 5: Selection Statements

The else Clause
•  Some programmers use as many braces as possible

inside if statements:
 if (i > j) {
 if (i > k) {
 max = i;
 } else {
 max = k;
 }
 } else {
 if (j > k) {
 max = j;
 } else {
 max = k;
 }
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 5: Selection Statements

The else Clause
•  Advantages of using braces even when they’re not

required:
–  Makes programs easier to modify, because more

statements can easily be added to any if or else
clause.

–  Helps avoid errors that can result from forgetting to use
braces when adding statements to an if or else
clause.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 5: Selection Statements

Cascaded if Statements
•  A “cascaded” if statement is often the best way

to test a series of conditions, stopping as soon as
one of them is true.

•  Example:
 if (n < 0)
 printf("n is less than 0\n");
 else
 if (n == 0)
 printf("n is equal to 0\n");
 else
 printf("n is greater than 0\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 5: Selection Statements

Cascaded if Statements
•  Although the second if statement is nested inside

the first, C programmers don’t usually indent it.
•  Instead, they align each else with the original
if:

 if (n < 0)
 printf("n is less than 0\n");
 else if (n == 0)
 printf("n is equal to 0\n");
 else
 printf("n is greater than 0\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 5: Selection Statements

Cascaded if Statements
•  This layout avoids the problem of excessive

indentation when the number of tests is large:
 if (expression)
 statement
 else if (expression)
 statement
 …
 else if (expression)
 statement
 else
 statement

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 5: Selection Statements

Program: Calculating a Broker’s
Commission

•  When stocks are sold or purchased through a broker, the
broker’s commission often depends upon the value of the
stocks traded.

•  Suppose that a broker charges the amounts shown in the
following table:

 Transaction size Commission rate
 Under $2,500 $30 + 1.7%
 $2,500–$6,250 $56 + 0.66%
 $6,250–$20,000 $76 + 0.34%
 $20,000–$50,000 $100 + 0.22%
 $50,000–$500,000 $155 + 0.11%
 Over $500,000 $255 + 0.09%

•  The minimum charge is $39.
 Copyright © 2008 W. W. Norton & Company.

All rights reserved.
28

Chapter 5: Selection Statements

Program: Calculating a Broker’s
Commission

•  The broker.c program asks the user to enter the
amount of the trade, then displays the amount of
the commission:

 Enter value of trade: 30000
 Commission: $166.00

•  The heart of the program is a cascaded if
statement that determines which range the trade
falls into.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 5: Selection Statements

broker.c

/* Calculates a broker's commission */

#include <stdio.h>

int main(void)
{
 float commission, value;

 printf("Enter value of trade: ");
 scanf("%f", &value);

 if (value < 2500.00f)
 commission = 30.00f + .017f * value;
 else if (value < 6250.00f)
 commission = 56.00f + .0066f * value;
 else if (value < 20000.00f)
 commission = 76.00f + .0034f * value;
 else if (value < 50000.00f)
 commission = 100.00f + .0022f * value;
 else if (value < 500000.00f)
 commission = 155.00f + .0011f * value;
 else
 commission = 255.00f + .0009f * value;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 5: Selection Statements

 if (commission < 39.00f)
 commission = 39.00f;

 printf("Commission: $%.2f\n", commission);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 5: Selection Statements

The “Dangling else” Problem
•  When if statements are nested, the “dangling else”

problem may occur:
 if (y != 0)
 if (x != 0)
 result = x / y;
 else
 printf("Error: y is equal to 0\n");

•  The indentation suggests that the else clause belongs
to the outer if statement.

•  However, C follows the rule that an else clause
belongs to the nearest if statement that hasn’t
already been paired with an else.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 5: Selection Statements

The “Dangling else” Problem
•  A correctly indented version would look like this:
 if (y != 0)
 if (x != 0)
 result = x / y;
 else
 printf("Error: y is equal to 0\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 5: Selection Statements

The “Dangling else” Problem
•  To make the else clause part of the outer if

statement, we can enclose the inner if statement
in braces:

 if (y != 0) {
 if (x != 0)
 result = x / y;
 } else
 printf("Error: y is equal to 0\n");

•  Using braces in the original if statement would
have avoided the problem in the first place.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 5: Selection Statements

Conditional Expressions
•  C’s conditional operator allows an expression to

produce one of two values depending on the value
of a condition.

•  The conditional operator consists of two symbols
(? and :), which must be used together:

 expr1 ? expr2 : expr3
•  The operands can be of any type.
•  The resulting expression is said to be a

conditional expression.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 5: Selection Statements

Conditional Expressions
•  The conditional operator requires three operands,

so it is often referred to as a ternary operator.
•  The conditional expression expr1 ? expr2 : expr3

should be read “if expr1 then expr2 else expr3.”
•  The expression is evaluated in stages: expr1 is

evaluated first; if its value isn’t zero, then expr2 is
evaluated, and its value is the value of the entire
conditional expression.

•  If the value of expr1 is zero, then the value of
expr3 is the value of the conditional.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 5: Selection Statements

Conditional Expressions
•  Example:
 int i, j, k;

 i = 1;
 j = 2;
 k = i > j ? i : j; /* k is now 2 */
 k = (i >= 0 ? i : 0) + j; /* k is now 3 */

•  The parentheses are necessary, because the
precedence of the conditional operator is less than
that of the other operators discussed so far, with
the exception of the assignment operators.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 5: Selection Statements

Conditional Expressions
•  Conditional expressions tend to make programs

shorter but harder to understand, so it’s probably
best to use them sparingly.

•  Conditional expressions are often used in return
statements:

 return i > j ? i : j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 5: Selection Statements

Conditional Expressions
•  Calls of printf can sometimes benefit from

condition expressions. Instead of
 if (i > j)
 printf("%d\n", i);
 else
 printf("%d\n", j);

 we could simply write
 printf("%d\n", i > j ? i : j);

•  Conditional expressions are also common in
certain kinds of macro definitions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 5: Selection Statements

Boolean Values in C89
•  For many years, the C language lacked a proper

Boolean type, and there is none defined in the C89
standard.

•  One way to work around this limitation is to declare
an int variable and then assign it either 0 or 1:

 int flag;

 flag = 0;
 …
 flag = 1;

•  Although this scheme works, it doesn’t contribute
much to program readability.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 5: Selection Statements

Boolean Values in C89
•  To make programs more understandable, C89

programmers often define macros with names
such as TRUE and FALSE:

 #define TRUE 1
 #define FALSE 0

•  Assignments to flag now have a more natural
appearance:

 flag = FALSE;
 …
 flag = TRUE;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 5: Selection Statements

Boolean Values in C89
•  To test whether flag is true, we can write
 if (flag == TRUE) …

 or just
 if (flag) …

•  The latter form is more concise. It also works
correctly if flag has a value other than 0 or 1.

•  To test whether flag is false, we can write
 if (flag == FALSE) …

 or
 if (!flag) …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 5: Selection Statements

Boolean Values in C89
•  Carrying this idea one step further, we might even

define a macro that can be used as a type:
 #define BOOL int

•  BOOL can take the place of int when declaring
Boolean variables:

 BOOL flag;

•  It’s now clear that flag isn’t an ordinary integer
variable, but instead represents a Boolean
condition.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 5: Selection Statements

Boolean Values in C99
•  C99 provides the _Bool type.
•  A Boolean variable can be declared by writing
 _Bool flag;

•  _Bool is an integer type, so a _Bool variable is
really just an integer variable in disguise.

•  Unlike an ordinary integer variable, however, a
_Bool variable can only be assigned 0 or 1.

•  Attempting to store a nonzero value into a _Bool
variable will cause the variable to be assigned 1:

 flag = 5; /* flag is assigned 1 */
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 5: Selection Statements

Boolean Values in C99
•  It’s legal (although not advisable) to perform

arithmetic on _Bool variables.
•  It’s also legal to print a _Bool variable (either 0

or 1 will be displayed).
•  And, of course, a _Bool variable can be tested in

an if statement:
 if (flag) /* tests whether flag is 1 */
 …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 5: Selection Statements

Boolean Values in C99
•  C99’s <stdbool.h> header makes it easier to

work with Boolean values.
•  It defines a macro, bool, that stands for _Bool.
•  If <stdbool.h> is included, we can write
 bool flag; /* same as _Bool flag; */

•  <stdbool.h> also supplies macros named true
and false, which stand for 1 and 0, respectively,
making it possible to write

 flag = false;
 …
 flag = true;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 5: Selection Statements

The switch Statement
•  A cascaded if statement can be used to compare an

expression against a series of values:
 if (grade == 4)
 printf("Excellent");
 else if (grade == 3)
 printf("Good");
 else if (grade == 2)
 printf("Average");
 else if (grade == 1)
 printf("Poor");
 else if (grade == 0)
 printf("Failing");
 else
 printf("Illegal grade");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 5: Selection Statements

The switch Statement
•  The switch statement is an alternative:
 switch (grade) {
 case 4: printf("Excellent");
 break;
 case 3: printf("Good");
 break;
 case 2: printf("Average");
 break;
 case 1: printf("Poor");
 break;
 case 0: printf("Failing");
 break;
 default: printf("Illegal grade");
 break;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 5: Selection Statements

The switch Statement
•  A switch statement may be easier to read than a

cascaded if statement.
•  switch statements are often faster than if

statements.
•  Most common form of the switch statement:
 switch (expression) {
 case constant-expression : statements
 …
 case constant-expression : statements
 default : statements
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 5: Selection Statements

The switch Statement
•  The word switch must be followed by an integer

expression—the controlling expression—in
parentheses.

•  Characters are treated as integers in C and thus
can be tested in switch statements.

•  Floating-point numbers and strings don’t qualify,
however.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 5: Selection Statements

The switch Statement
•  Each case begins with a label of the form
 case constant-expression :

•  A constant expression is much like an ordinary
expression except that it can’t contain variables or
function calls.
–  5 is a constant expression, and 5 + 10 is a constant

expression, but n + 10 isn’t a constant expression
(unless n is a macro that represents a constant).

•  The constant expression in a case label must
evaluate to an integer (characters are acceptable).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 5: Selection Statements

The switch Statement
•  After each case label comes any number of

statements.
•  No braces are required around the statements.
•  The last statement in each group is normally
break.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 5: Selection Statements

The switch Statement
•  Duplicate case labels aren’t allowed.
•  The order of the cases doesn’t matter, and the default

case doesn’t need to come last.
•  Several case labels may precede a group of statements:
 switch (grade) {
 case 4:
 case 3:
 case 2:
 case 1: printf("Passing");
 break;
 case 0: printf("Failing");
 break;
 default: printf("Illegal grade");
 break;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 5: Selection Statements

The switch Statement
•  To save space, several case labels can be put on the

same line:
 switch (grade) {
 case 4: case 3: case 2: case 1:
 printf("Passing");
 break;
 case 0: printf("Failing");
 break;
 default: printf("Illegal grade");
 break;
 }

•  If the default case is missing and the controlling
expression’s value doesn’t match any case label,
control passes to the next statement after the switch.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 5: Selection Statements

The Role of the break Statement
•  Executing a break statement causes the program

to “break” out of the switch statement;
execution continues at the next statement after the
switch.

•  The switch statement is really a form of
“computed jump.”

•  When the controlling expression is evaluated,
control jumps to the case label matching the value
of the switch expression.

•  A case label is nothing more than a marker
indicating a position within the switch.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 5: Selection Statements

The Role of the break Statement
•  Without break (or some other jump statement) at the

end of a case, control will flow into the next case.
•  Example:
 switch (grade) {
 case 4: printf("Excellent");
 case 3: printf("Good");
 case 2: printf("Average");
 case 1: printf("Poor");
 case 0: printf("Failing");
 default: printf("Illegal grade");
 }

•  If the value of grade is 3, the message printed is
 GoodAveragePoorFailingIllegal grade

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

Chapter 5: Selection Statements

The Role of the break Statement
•  Omitting break is sometimes done intentionally, but

it’s usually just an oversight.
•  It’s a good idea to point out deliberate omissions of
break:

 switch (grade) {
 case 4: case 3: case 2: case 1:
 num_passing++;
 /* FALL THROUGH */
 case 0: total_grades++;
 break;
 }

•  Although the last case never needs a break statement,
including one makes it easy to add cases in the future.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 5: Selection Statements

Program: Printing a Date in Legal Form
•  Contracts and other legal documents are often dated in

the following way:
 Dated this __________ day of __________ , 20__ .

•  The date.c program will display a date in this form
after the user enters the date in month/day/year form:

 Enter date (mm/dd/yy): 7/19/14
 Dated this 19th day of July, 2014.

•  The program uses switch statements to add “th” (or
“st” or “nd” or “rd”) to the day, and to print the month
as a word instead of a number.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 5: Selection Statements

date.c

/* Prints a date in legal form */

#include <stdio.h>

int main(void)
{
 int month, day, year;

 printf("Enter date (mm/dd/yy): ");
 scanf("%d /%d /%d", &month, &day, &year);

 printf("Dated this %d", day);
 switch (day) {
 case 1: case 21: case 31:
 printf("st"); break;
 case 2: case 22:
 printf("nd"); break;
 case 3: case 23:
 printf("rd"); break;
 default: printf("th"); break;
 }
 printf(" day of ");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 5: Selection Statements

 switch (month) {
 case 1: printf("January"); break;
 case 2: printf("February"); break;
 case 3: printf("March"); break;
 case 4: printf("April"); break;
 case 5: printf("May"); break;
 case 6: printf("June"); break;
 case 7: printf("July"); break;
 case 8: printf("August"); break;
 case 9: printf("September"); break;
 case 10: printf("October"); break;
 case 11: printf("November"); break;
 case 12: printf("December"); break;
 }

 printf(", 20%.2d.\n", year);
 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

60

