Chapter 5

Selection Statements

Copyright © 2008 W. W. Norton & Company. All rights reserved.

1

Statements

- So far, we've used return statements and expression statements.
- Most of C's remaining statements fall into three categories:
 - *Selection statements:* if and switch
 - *Iteration statements:* while, do, and for
 - Jump statements: break, continue, and goto.
 (return also belongs in this category.)
- Other C statements:
 - Compound statement
 - Null statement

Logical Expressions

- Several of C's statements must test the value of an expression to see if it is "true" or "false."
- For example, an if statement might need to test the expression i < j; a true value would indicate that i is less than j.
- In many programming languages, an expression such as i < j would have a special "Boolean" or "logical" type.
- In C, a comparison such as i < j yields an integer: either 0 (false) or 1 (true).

Relational Operators

• C's relational operators:

- < less than
- > greater than
- <= less than or equal to
- >= greater than or equal to
- These operators produce 0 (false) or 1 (true) when used in expressions.
- The relational operators can be used to compare integers and floating-point numbers, with operands of mixed types allowed.

Relational Operators

• The precedence of the relational operators is lower than that of the arithmetic operators.

- For example, i + j < k - 1 means (i + j) < (k - 1).

• The relational operators are left associative.

Relational Operators

- The expression
 - i < j < k

is legal, but does not test whether j lies between i and k.

• Since the < operator is left associative, this expression is equivalent to

(i < j) < k

The 1 or 0 produced by i < j is then compared to k.

• The correct expression is i < j & & j < k.

Equality Operators

- C provides two *equality operators:*
 - == equal to
 - ! = not equal to
- The equality operators are left associative and produce either 0 (false) or 1 (true) as their result.
- The equality operators have lower precedence than the relational operators, so the expression

is equivalent to

Logical Operators

- More complicated logical expressions can be built from simpler ones by using the *logical operators:*
 - ! logical negation
 - ۵۵ logical and
 - || logical or
- The ! operator is unary, while && and || are binary.
- The logical operators produce 0 or 1 as their result.
- The logical operators treat any nonzero operand as a true value and any zero operand as a false value.

Logical Operators

• Behavior of the logical operators:

!expr has the value 1 if *expr* has the value 0.

- *expr1* && *expr2* has the value 1 if the values of *expr1* and *expr2* are both nonzero.
- *expr1* || *expr2* has the value 1 if either *expr1* or *expr2* (or both) has a nonzero value.
- In all other cases, these operators produce the value 0.

Logical Operators

- Both && and || perform "short-circuit" evaluation: they first evaluate the left operand, then the right one.
- If the value of the expression can be deduced from the left operand alone, the right operand isn't evaluated.
- Example:

(i !=0) is evaluated first. If i isn't equal to 0, then (j / i > 0) is evaluated.

If i is 0, the entire expression must be false, so there's no need to evaluate (j / i > 0). Without short-circuit evaluation, division by zero would have occurred.

Logical Operators

- Thanks to the short-circuit nature of the && and
 | operators, side effects in logical expressions
 may not always occur.
- Example:

i > 0 && ++j > 0

If i > 0 is false, then ++j > 0 is not evaluated, so j isn't incremented.

The problem can be fixed by changing the condition to ++j > 0 && i > 0 or, even better, by incrementing j separately.

Logical Operators

- The ! operator has the same precedence as the unary plus and minus operators.
- The precedence of & & and || is lower than that of the relational and equality operators.

- For example, i < j && k == m means (i < j) && (k == m).</p>

• The ! operator is right associative; & & and | | are left associative.

The if Statement

- The *if* statement allows a program to choose between two alternatives by testing an expression.
- In its simplest form, the if statement has the form if (*expression*) *statement*
- When an *if* statement is executed, *expression* is evaluated; if its value is nonzero, *statement* is executed.
- Example:

if (line_num == MAX_LINES)
 line_num = 0;

The if Statement

- Confusing == (equality) with = (assignment) is perhaps the most common C programming error.
- The statement

if (i == 0) ...

tests whether i is equal to 0.

• The statement

if (i = 0) ...

assigns 0 to i, then tests whether the result is nonzero.

The if Statement

- Often the expression in an *if* statement will test whether a variable falls within a range of values.
- To test whether $0 \le i \le n$:

if (0 <= i && i < n) ...

• To test the opposite condition (i is outside the range):

if (i < 0 || i >= n) ...

Compound Statements

• In the *if* statement template, notice that *statement* is singular, not plural:

if (*expression*) *statement*

- To make an if statement control two or more statements, use a *compound statement*.
- A compound statement has the form

{ statements }

• Putting braces around a group of statements forces the compiler to treat it as a single statement.

Compound Statements

• Example:

{ line_num = 0; page_num++; }

• A compound statement is usually put on multiple lines, with one statement per line:

```
{
   line_num = 0;
   page_num++;
}
```

• Each inner statement still ends with a semicolon, but the compound statement itself does not.

Compound Statements

• Example of a compound statement used inside an if statement:

```
if (line_num == MAX_LINES) {
   line_num = 0;
   page_num++;
}
```

• Compound statements are also common in loops and other places where the syntax of C requires a single statement.

The else Clause

- An if statement may have an else clause: if (*expression*) *statement* else *statement*
- The statement that follows the word else is executed if the expression has the value 0.
- Example:

The else Clause

- When an if statement contains an else clause, where should the else be placed?
- Many C programmers align it with the *if* at the beginning of the statement.
- Inner statements are usually indented, but if they're short they can be put on the same line as the if and else:

if (i > j) max = i; else max = j;

• It's not unusual for if statements to be nested inside other if statements:

```
if (i > j)
    if (i > k)
        max = i;
    else
        max = k;
else
    if (j > k)
        max = j;
    else
        max = k;
```

• Aligning each else with the matching if makes the nesting easier to see.

• To avoid confusion, don't hesitate to add braces:

• Some programmers use as many braces as possible inside if statements:

```
if (i > j) {
   if (i > k) {
     max = i;
   } else {
     max = k;
   }
 } else {
   if (j > k) {
     max = j;
   } else {
     max = k;
   }
PROGRAMMING
A Modern Approach SECOND EDITION
```

23

- Advantages of using braces even when they' re not required:
 - Makes programs easier to modify, because more statements can easily be added to any if or else clause.
 - Helps avoid errors that can result from forgetting to use braces when adding statements to an if or else clause.

Cascaded if Statements

- A "cascaded" if statement is often the best way to test a series of conditions, stopping as soon as one of them is true.
- Example:

```
if (n < 0)
    printf("n is less than 0\n");
else
    if (n == 0)
        printf("n is equal to 0\n");
    else
        printf("n is greater than 0\n");</pre>
```


Cascaded if Statements

- Although the second if statement is nested inside the first, C programmers don't usually indent it.
- Instead, they align each else with the original if:

```
if (n < 0)
    printf("n is less than 0\n");
else if (n == 0)
    printf("n is equal to 0\n");
else
    printf("n is greater than 0\n");</pre>
```


Cascaded if Statements

• This layout avoids the problem of excessive indentation when the number of tests is large:

```
if ( expression )
    statement
else if ( expression )
    statement
```

...
else if (expression)
 statement
else

statement

Program: Calculating a Broker's Commission

- When stocks are sold or purchased through a broker, the broker's commission often depends upon the value of the stocks traded.
- Suppose that a broker charges the amounts shown in the following table:

Transaction size	Commission rate
Under \$2,500	\$30 + 1.7%
\$2,500-\$6,250	56 + 0.66%
\$6,250-\$20,000	76 + 0.34%
\$20,000-\$50,000	100 + 0.22%
\$50,000-\$500,000	\$155 + 0.11%
Over \$500,000	\$255 + 0.09%

• The minimum charge is \$39.

Program: Calculating a Broker's Commission

• The broker.c program asks the user to enter the amount of the trade, then displays the amount of the commission:

Enter value of trade: <u>30000</u> Commission: \$166.00

• The heart of the program is a cascaded if statement that determines which range the trade falls into.

broker.c

```
/* Calculates a broker's commission */
#include <stdio.h>
int main (void)
{
 float commission, value;
 printf("Enter value of trade: ");
  scanf("%f", &value);
  if (value < 2500.00f)
    commission = 30.00f + .017f * value;
  else if (value < 6250.00f)
    commission = 56.00f + .0066f * value;
  else if (value < 20000.00f)
    commission = 76.00f + .0034f * value;
 else if (value < 50000.00f)
    commission = 100.00f + .0022f * value;
  else if (value < 500000.00f)
    commission = 155.00f + .0011f * value;
  else
    commission = 255.00f + .0009f * value;
```


30

Copyright © 2008 W. W. Norton & Company. All rights reserved.

```
if (commission < 39.00f)
   commission = 39.00f;
printf("Commission: $%.2f\n", commission);
return 0;
}</pre>
```


The "Dangling else" Problem

• When if statements are nested, the "dangling else" problem may occur:

```
if (y != 0)
    if (x != 0)
        result = x / y;
else
    printf("Error: y is equal to 0\n");
```

- The indentation suggests that the else clause belongs to the outer if statement.
- However, C follows the rule that an else clause belongs to the nearest if statement that hasn't already been paired with an else.

The "Dangling else" Problem

• A correctly indented version would look like this:

```
if (y != 0)
    if (x != 0)
        result = x / y;
    else
        printf("Error: y is equal to 0\n");
```


The "Dangling else" Problem

• To make the else clause part of the outer if statement, we can enclose the inner if statement in braces:

• Using braces in the original *if* statement would have avoided the problem in the first place.

Conditional Expressions

- C's *conditional operator* allows an expression to produce one of two values depending on the value of a condition.
- The conditional operator consists of two symbols (? and :), which must be used together: *expr1* ? *expr2* : *expr3*
- The operands can be of any type.
- The resulting expression is said to be a *conditional expression*.

Conditional Expressions

- The conditional operator requires three operands, so it is often referred to as a *ternary* operator.
- The conditional expression *expr1* ? *expr2* : *expr3* should be read "if *expr1* then *expr2* else *expr3*."
- The expression is evaluated in stages: *expr1* is evaluated first; if its value isn't zero, then *expr2* is evaluated, and its value is the value of the entire conditional expression.
- If the value of *expr1* is zero, then the value of *expr3* is the value of the conditional.

Conditional Expressions

- Example:
- The parentheses are necessary, because the precedence of the conditional operator is less than that of the other operators discussed so far, with the exception of the assignment operators.

Conditional Expressions

- Conditional expressions tend to make programs shorter but harder to understand, so it's probably best to use them sparingly.
- Conditional expressions are often used in return statements:

return i > j ? i : j;

Conditional Expressions

• Calls of printf can sometimes benefit from condition expressions. Instead of

```
if (i > j)
printf("%d\n", i);
else
```

```
printf("%d\n", j);
```

we could simply write

printf("%d\n", i > j ? i : j);

• Conditional expressions are also common in certain kinds of macro definitions.

Boolean Values in C89

- For many years, the C language lacked a proper Boolean type, and there is none defined in the C89 standard.
- One way to work around this limitation is to declare an int variable and then assign it either 0 or 1: int flag;

```
flag = 0;
```

flag = 1;

...

• Although this scheme works, it doesn't contribute much to program readability.

Boolean Values in C89

• To make programs more understandable, C89 programmers often define macros with names such as TRUE and FALSE:

#define TRUE 1
#define FALSE 0

• Assignments to flag now have a more natural appearance:

```
flag = FALSE;
```

```
····
```

```
flag = TRUE;
```


Boolean Values in C89

- To test whether flag is true, we can write
 if (flag == TRUE) ...
 or just
 if (flag) ...
- The latter form is more concise. It also works correctly if flag has a value other than 0 or 1.
- To test whether flag is false, we can write

```
if (flag == FALSE) ...
```

or

Boolean Values in C89

- Carrying this idea one step further, we might even define a macro that can be used as a type: #define BOOL int
- BOOL can take the place of int when declaring Boolean variables:

BOOL flag;

• It's now clear that flag isn't an ordinary integer variable, but instead represents a Boolean condition.

Boolean Values in C99

- C99 provides the _Bool type.
- A Boolean variable can be declared by writing _Bool flag;
- _Bool is an integer type, so a _Bool variable is really just an integer variable in disguise.
- Unlike an ordinary integer variable, however, a ______Bool variable can only be assigned 0 or 1.
- Attempting to store a nonzero value into a _Bool variable will cause the variable to be assigned 1:

flag = 5; /* flag is assigned 1 */

Boolean Values in C99

- It's legal (although not advisable) to perform arithmetic on _Bool variables.
- It's also legal to print a _Bool variable (either 0 or 1 will be displayed).
- And, of course, a _Bool variable can be tested in an if statement:

if (flag) /* tests whether flag is 1 */

Boolean Values in C99

- C99's <stdbool.h> header makes it easier to work with Boolean values.
- It defines a macro, bool, that stands for _Bool.
- If <stdbool.h> is included, we can write
 bool flag; /* same as Bool flag; */
- <stdbool.h> also supplies macros named true and false, which stand for 1 and 0, respectively, making it possible to write

flag = false;

flag = true;

...

• A cascaded if statement can be used to compare an expression against a series of values:

```
if (grade == 4)
   printf("Excellent");
else if (grade == 3)
   printf("Good");
else if (grade == 2)
   printf("Average");
else if (grade == 1)
   printf("Poor");
else if (grade == 0)
   printf("Failing");
else
   printf("Illegal grade");
```


Copyright © 2008 W. W. Norton & Company. All rights reserved.

• The switch statement is an alternative:

```
switch (grade) {
 case 4: printf("Excellent");
           break;
 case 3: printf("Good");
          break;
 case 2: printf("Average");
          break;
 case 1: printf("Poor");
          break;
 case 0: printf("Failing");
           break;
 default: printf("Illegal grade");
           break;
```


- A switch statement may be easier to read than a cascaded if statement.
- switch statements are often faster than if statements.
- Most common form of the switch statement:

```
switch ( expression ) {
   case constant-expression : statements
   ...
   case constant-expression : statements
   default : statements
}
```


- The word switch must be followed by an integer expression—the *controlling expression*—in parentheses.
- Characters are treated as integers in C and thus can be tested in switch statements.
- Floating-point numbers and strings don't qualify, however.

- Each case begins with a label of the form case *constant-expression* :
- A *constant expression* is much like an ordinary expression except that it can't contain variables or function calls.
 - 5 is a constant expression, and 5 + 10 is a constant expression, but n + 10 isn't a constant expression (unless n is a macro that represents a constant).
- The constant expression in a case label must evaluate to an integer (characters are acceptable).

- After each case label comes any number of statements.
- No braces are required around the statements.
- The last statement in each group is normally break.

- Duplicate case labels aren' t allowed.
- The order of the cases doesn't matter, and the default case doesn't need to come last.
- Several case labels may precede a group of statements:

```
switch (grade) {
   case 4:
   case 3:
   case 2:
   case 1: printf("Passing");
        break;
   case 0: printf("Failing");
        break;
   default: printf("Illegal grade");
        break;
}
```


• To save space, several case labels can be put on the same line:

```
switch (grade) {
   case 4: case 3: case 2: case 1:
        printf("Passing");
        break;
   case 0: printf("Failing");
        break;
   default: printf("Illegal grade");
        break;
}
```

• If the default case is missing and the controlling expression's value doesn't match any case label, control passes to the next statement after the switch.

The Role of the **break** Statement

- Executing a break statement causes the program to "break" out of the switch statement; execution continues at the next statement after the switch.
- The switch statement is really a form of "computed jump."
- When the controlling expression is evaluated, control jumps to the case label matching the value of the switch expression.
- A case label is nothing more than a marker indicating a position within the switch. *A Modern Approach* SECOND EDITION

The Role of the **break** Statement

- Without break (or some other jump statement) at the end of a case, control will flow into the next case.
- Example:

```
switch (grade) {
   case 4: printf("Excellent");
   case 3: printf("Good");
   case 2: printf("Average");
   case 1: printf("Poor");
   case 0: printf("Failing");
   default: printf("Illegal grade");
}
```

• If the value of grade is 3, the message printed is GoodAveragePoorFailingIllegal grade

The Role of the **break** Statement

- Omitting break is sometimes done intentionally, but it's usually just an oversight.
- It's a good idea to point out deliberate omissions of break:

```
switch (grade) {
  case 4: case 3: case 2: case 1:
    num_passing++;
    /* FALL THROUGH */
  case 0: total_grades++;
    break;
}
```

• Although the last case never needs a break statement, including one makes it easy to add cases in the future.

Program: Printing a Date in Legal Form

• Contracts and other legal documents are often dated in the following way:

Dated this _____ day of _____, 20__.

- The date.c program will display a date in this form after the user enters the date in month/day/year form:
 Enter date (mm/dd/yy): <u>7/19/14</u>
 Dated this 19th day of July, 2014.
- The program uses switch statements to add "th" (or "st" or "nd" or "rd") to the day, and to print the month as a word instead of a number.

date.c

```
/* Prints a date in legal form */
#include <stdio.h>
int main(void)
  int month, day, year;
 printf("Enter date (mm/dd/yy): ");
  scanf("%d /%d /%d", &month, &day, &year);
  printf("Dated this %d", day);
  switch (day) {
    case 1: case 21: case 31:
      printf("st"); break;
    case 2: case 22:
      printf("nd"); break;
    case 3: case 23:
      printf("rd"); break;
    default: printf("th"); break;
  }
 printf(" day of ");
```


59

Copyright © 2008 W. W. Norton & Company. All rights reserved.

```
switch (month) {
 case 1: printf("January");
                               break;
 case 2: printf("February");
                               break;
 case 3: printf("March");
                               break;
 case 4: printf("April");
                               break;
 case 5: printf("May");
                               break;
 case 6: printf("June");
                               break;
 case 7: printf("July");
                               break;
 case 8: printf("August");
                               break;
 case 9: printf("September"); break;
 case 10: printf("October");
                               break;
 case 11: printf("November"); break;
 case 12: printf("December");
                               break;
}
printf(", 20%.2d.\n", year);
return 0;
```


}