
Chapter 6: Loops

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 6

Loops

Chapter 6: Loops

Iteration Statements
•  C’s iteration statements are used to set up loops.
•  A loop is a statement whose job is to repeatedly

execute some other statement (the loop body).
•  In C, every loop has a controlling expression.
•  Each time the loop body is executed (an iteration

of the loop), the controlling expression is
evaluated.
–  If the expression is true (has a value that’s not zero) the

loop continues to execute.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 6: Loops

Iteration Statements
•  C provides three iteration statements:

–  The while statement is used for loops whose
controlling expression is tested before the loop body is
executed.

–  The do statement is used if the expression is tested
after the loop body is executed.

–  The for statement is convenient for loops that
increment or decrement a counting variable.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 6: Loops

The while Statement
•  Using a while statement is the easiest way to set

up a loop.
•  The while statement has the form
 while (expression) statement

•  expression is the controlling expression; statement
is the loop body.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 6: Loops

The while Statement
•  Example of a while statement:
 while (i < n) /* controlling expression */
 i = i * 2; /* loop body */

•  When a while statement is executed, the
controlling expression is evaluated first.

•  If its value is nonzero (true), the loop body is
executed and the expression is tested again.

•  The process continues until the controlling
expression eventually has the value zero.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 6: Loops

The while Statement
•  A while statement that computes the smallest power of

2 that is greater than or equal to a number n:
 i = 1;
 while (i < n)
 i = i * 2;

•  A trace of the loop when n has the value 10:
 i = 1; i is now 1.
 Is i < n? Yes; continue.
 i = i * 2; i is now 2.
 Is i < n? Yes; continue.
 i = i * 2; i is now 4.
 Is i < n? Yes; continue.
 i = i * 2; i is now 8.
 Is i < n? Yes; continue.
 i = i * 2; i is now 16.
 Is i < n? No; exit from loop.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 6: Loops

The while Statement
•  Although the loop body must be a single statement,

that’s merely a technicality.
•  If multiple statements are needed, use braces to create

a single compound statement:
 while (i > 0) {
 printf("T minus %d and counting\n", i);
 i--;
 }

•  Some programmers always use braces, even when
they’re not strictly necessary:

 while (i < n) {
 i = i * 2;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 6: Loops

The while Statement
•  The following statements display a series of
“countdown” messages:

 i = 10;
 while (i > 0) {
 printf("T minus %d and counting\n", i);
 i--;
 }

•  The final message printed is T minus 1 and
counting.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 6: Loops

The while Statement
•  Observations about the while statement:

–  The controlling expression is false when a while loop
terminates. Thus, when a loop controlled by i > 0
terminates, i must be less than or equal to 0.

–  The body of a while loop may not be executed at all,
because the controlling expression is tested before the
body is executed.

–  A while statement can often be written in a variety of
ways. A more concise version of the countdown loop:
 while (i > 0)
 printf("T minus %d and counting\n", i--);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 6: Loops

Infinite Loops
•  A while statement won’t terminate if the controlling

expression always has a nonzero value.
•  C programmers sometimes deliberately create an

infinite loop by using a nonzero constant as the
controlling expression:

 while (1) …

•  A while statement of this form will execute forever
unless its body contains a statement that transfers
control out of the loop (break, goto, return) or
calls a function that causes the program to terminate.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 6: Loops

Program: Printing a Table of Squares
•  The square.c program uses a while statement

to print a table of squares.
•  The user specifies the number of entries in the

table:
 This program prints a table of squares.
 Enter number of entries in table: 5
 1 1
 2 4
 3 9
 4 16
 5 25

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 6: Loops

square.c

/* Prints a table of squares using a while statement */

#include <stdio.h>

int main(void)
{
 int i, n;

 printf("This program prints a table of squares.\n");
 printf("Enter number of entries in table: ");
 scanf("%d", &n);

 i = 1;
 while (i <= n) {
 printf("%10d%10d\n", i, i * i);
 i++;
 }

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 6: Loops

Program: Summing a Series of Numbers
•  The sum.c program sums a series of integers

entered by the user:
 This program sums a series of integers.
 Enter integers (0 to terminate): 8 23 71 5 0
 The sum is: 107

•  The program will need a loop that uses scanf to
read a number and then adds the number to a
running total.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 6: Loops

sum.c

/* Sums a series of numbers */

#include <stdio.h>

int main(void)
{
 int n, sum = 0;

 printf("This program sums a series of integers.\n");
 printf("Enter integers (0 to terminate): ");

 scanf("%d", &n);
 while (n != 0) {
 sum += n;
 scanf("%d", &n);
 }
 printf("The sum is: %d\n", sum);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 6: Loops

The do Statement
•  General form of the do statement:
 do statement while (expression) ;

•  When a do statement is executed, the loop body is
executed first, then the controlling expression is
evaluated.

•  If the value of the expression is nonzero, the loop
body is executed again and then the expression is
evaluated once more.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 6: Loops

The do Statement
•  The countdown example rewritten as a do

statement:
 i = 10;
 do {
 printf("T minus %d and counting\n", i);
 --i;
 } while (i > 0);

•  The do statement is often indistinguishable from the
while statement.

•  The only difference is that the body of a do
statement is always executed at least once.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 6: Loops

The do Statement
•  It’s a good idea to use braces in all do statements,

whether or not they’re needed, because a do
statement without braces can easily be mistaken
for a while statement:

 do
 printf("T minus %d and counting\n", i--);
 while (i > 0);

•  A careless reader might think that the word
while was the beginning of a while statement.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 6: Loops

Program: Calculating the
Number of Digits in an Integer

•  The numdigits.c program calculates the
number of digits in an integer entered by the user:

 Enter a nonnegative integer: 60
 The number has 2 digit(s).

•  The program will divide the user’s input by 10
repeatedly until it becomes 0; the number of
divisions performed is the number of digits.

•  Writing this loop as a do statement is better than
using a while statement, because every integer—
even 0—has at least one digit.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 6: Loops

numdigits.c

/* Calculates the number of digits in an integer */

#include <stdio.h>

int main(void)
{
 int digits = 0, n;

 printf("Enter a nonnegative integer: ");
 scanf("%d", &n);

 do {
 n /= 10;
 digits++;
 } while (n > 0);

 printf("The number has %d digit(s).\n", digits);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 6: Loops

The for Statement
•  The for statement is ideal for loops that have a
“counting” variable, but it’s versatile enough to
be used for other kinds of loops as well.

•  General form of the for statement:
 for (expr1 ; expr2 ; expr3) statement
 expr1, expr2, and expr3 are expressions.

•  Example:
 for (i = 10; i > 0; i--)
 printf("T minus %d and counting\n", i);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 6: Loops

The for Statement
•  The for statement is closely related to the while

statement.
•  Except in a few rare cases, a for loop can always be

replaced by an equivalent while loop:
 expr1;
 while (expr2) {
 statement
 expr3;
 }

•  expr1 is an initialization step that’s performed only
once, before the loop begins to execute.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 6: Loops

The for Statement
•  expr2 controls loop termination (the loop continues

executing as long as the value of expr2 is nonzero).
•  expr3 is an operation to be performed at the end of

each loop iteration.
•  The result when this pattern is applied to the previous
for loop:

 i = 10;
 while (i > 0) {
 printf("T minus %d and counting\n", i);
 i--;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 6: Loops

The for Statement
•  Studying the equivalent while statement can

help clarify the fine points of a for statement.
•  For example, what if i-- is replaced by --i?
 for (i = 10; i > 0; --i)
 printf("T minus %d and counting\n", i);

•  The equivalent while loop shows that the change
has no effect on the behavior of the loop:

 i = 10;
 while (i > 0) {
 printf("T minus %d and counting\n", i);
 --i;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 6: Loops

The for Statement
•  Since the first and third expressions in a for

statement are executed as statements, their values
are irrelevant—they’re useful only for their side
effects.

•  Consequently, these two expressions are usually
assignments or increment/decrement expressions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 6: Loops

for Statement Idioms
•  The for statement is usually the best choice for

loops that “count up” (increment a variable) or
“count down” (decrement a variable).

•  A for statement that counts up or down a total of n
times will usually have one of the following forms:

Counting up from 0 to n–1: for (i = 0; i < n; i++) …

Counting up from 1 to n: for (i = 1; i <= n; i++) …

Counting down from n–1 to 0: for (i = n - 1; i >= 0; i--) …

Counting down from n to 1: for (i = n; i > 0; i--) …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 6: Loops

for Statement Idioms
•  Common for statement errors:

–  Using < instead of > (or vice versa) in the controlling
expression. “Counting up” loops should use the < or
<= operator. “Counting down” loops should use > or
>=.

–  Using == in the controlling expression instead of <, <=,
>, or >=.

–  “Off-by-one” errors such as writing the controlling
expression as i <= n instead of i < n.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 6: Loops

Omitting Expressions in a for Statement
•  C allows any or all of the expressions that control a
for statement to be omitted.

•  If the first expression is omitted, no initialization is
performed before the loop is executed:

 i = 10;
 for (; i > 0; --i)
 printf("T minus %d and counting\n", i);

•  If the third expression is omitted, the loop body is
responsible for ensuring that the value of the second
expression eventually becomes false:

 for (i = 10; i > 0;)
 printf("T minus %d and counting\n", i--);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 6: Loops

Omitting Expressions in a for Statement
•  When the first and third expressions are both

omitted, the resulting loop is nothing more than a
while statement in disguise:

 for (; i > 0;)
 printf("T minus %d and counting\n", i--);

 is the same as
 while (i > 0)
 printf("T minus %d and counting\n", i--);

•  The while version is clearer and therefore
preferable.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 6: Loops

Omitting Expressions in a for Statement
•  If the second expression is missing, it defaults to a

true value, so the for statement doesn’t terminate
(unless stopped in some other fashion).

•  For example, some programmers use the
following for statement to establish an infinite
loop:

 for (;;) …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 6: Loops

for Statements in C99
•  In C99, the first expression in a for statement can

be replaced by a declaration.
•  This feature allows the programmer to declare a

variable for use by the loop:
 for (int i = 0; i < n; i++)
 …

•  The variable i need not have been declared prior
to this statement.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 6: Loops

for Statements in C99
•  A variable declared by a for statement can’t be

accessed outside the body of the loop (we say that
it’s not visible outside the loop):

 for (int i = 0; i < n; i++) {
 …
 printf("%d", i);
 /* legal; i is visible inside loop */
 …
 }
 printf("%d", i); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 6: Loops

for Statements in C99
•  Having a for statement declare its own control

variable is usually a good idea: it’s convenient
and it can make programs easier to understand.

•  However, if the program needs to access the
variable after loop termination, it’s necessary to
use the older form of the for statement.

•  A for statement may declare more than one
variable, provided that all variables have the same
type:

 for (int i = 0, j = 0; i < n; i++)
 …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 6: Loops

The Comma Operator
•  On occasion, a for statement may need to have

two (or more) initialization expressions or one that
increments several variables each time through the
loop.

•  This effect can be accomplished by using a
comma expression as the first or third expression
in the for statement.

•  A comma expression has the form
 expr1 , expr2
 where expr1 and expr2 are any two expressions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 6: Loops

The Comma Operator
•  A comma expression is evaluated in two steps:

–  First, expr1 is evaluated and its value discarded.
–  Second, expr2 is evaluated; its value is the value of the entire

expression.

•  Evaluating expr1 should always have a side effect; if
it doesn’t, then expr1 serves no purpose.

•  When the comma expression ++i, i + j is
evaluated, i is first incremented, then i + j is
evaluated.
–  If i and j have the values 1 and 5, respectively, the value of

the expression will be 7, and i will be incremented to 2.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 6: Loops

The Comma Operator
•  The comma operator is left associative, so the

compiler interprets
 i = 1, j = 2, k = i + j

 as
 ((i = 1), (j = 2)), (k = (i + j))

•  Since the left operand in a comma expression is
evaluated before the right operand, the
assignments i = 1, j = 2, and k = i + j will be
performed from left to right.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 6: Loops

The Comma Operator
•  The comma operator makes it possible to “glue” two

expressions together to form a single expression.
•  Certain macro definitions can benefit from the comma

operator.
•  The for statement is the only other place where the

comma operator is likely to be found.
•  Example:
 for (sum = 0, i = 1; i <= N; i++)
 sum += i;

•  With additional commas, the for statement could
initialize more than two variables.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 6: Loops

Program: Printing a Table
of Squares (Revisited)

•  The square.c program (Section 6.1) can be
improved by converting its while loop to a for
loop.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 6: Loops

square2.c

/* Prints a table of squares using a for statement */

#include <stdio.h>

int main(void)
{
 int i, n;

 printf("This program prints a table of squares.\n");
 printf("Enter number of entries in table: ");
 scanf("%d", &n);

 for (i = 1; i <= n; i++)
 printf("%10d%10d\n", i, i * i);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 6: Loops

Program: Printing a Table
of Squares (Revisited)

•  C places no restrictions on the three expressions that
control the behavior of a for statement.

•  Although these expressions usually initialize, test, and
update the same variable, there’s no requirement that
they be related in any way.

•  The square3.c program is equivalent to
square2.c, but contains a for statement that
initializes one variable (square), tests another (i),
and increments a third (odd).

•  The flexibility of the for statement can sometimes be
useful, but in this case the original program was clearer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 6: Loops

square3.c

/* Prints a table of squares using an odd method */

#include <stdio.h>

int main(void)
{
 int i, n, odd, square;

 printf("This program prints a table of squares.\n");
 printf("Enter number of entries in table: ");
 scanf("%d", &n);

 i = 1;
 odd = 3;
 for (square = 1; i <= n; odd += 2) {
 printf("%10d%10d\n", i, square);
 ++i;
 square += odd;
 }

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 6: Loops

Exiting from a Loop
•  The normal exit point for a loop is at the

beginning (as in a while or for statement) or at
the end (the do statement).

•  Using the break statement, it’s possible to write
a loop with an exit point in the middle or a loop
with more than one exit point.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 6: Loops

The break Statement
•  The break statement can transfer control out of a

switch statement, but it can also be used to jump
out of a while, do, or for loop.

•  A loop that checks whether a number n is prime
can use a break statement to terminate the loop
as soon as a divisor is found:

 for (d = 2; d < n; d++)
 if (n % d == 0)
 break;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 6: Loops

The break Statement
•  After the loop has terminated, an if statement can

be use to determine whether termination was
premature (hence n isn’t prime) or normal (n is
prime):

 if (d < n)
 printf("%d is divisible by %d\n", n, d);
 else
 printf("%d is prime\n", n);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 6: Loops

The break Statement
•  The break statement is particularly useful for writing

loops in which the exit point is in the middle of the body
rather than at the beginning or end.

•  Loops that read user input, terminating when a particular
value is entered, often fall into this category:

 for (;;) {
 printf("Enter a number (enter 0 to stop): ");
 scanf("%d", &n);
 if (n == 0)
 break;
 printf("%d cubed is %d\n", n, n * n * n);
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 6: Loops

The break Statement
•  A break statement transfers control out of the innermost

enclosing while, do, for, or switch.
•  When these statements are nested, the break statement

can escape only one level of nesting.
•  Example:
 while (…) {
 switch (…) {
 …
 break;
 …
 }
 }

•  break transfers control out of the switch statement, but
not out of the while loop.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 6: Loops

The continue Statement
•  The continue statement is similar to break:

–  break transfers control just past the end of a loop.
–  continue transfers control to a point just before the

end of the loop body.

•  With break, control leaves the loop; with
continue, control remains inside the loop.

•  There’s another difference between break and
continue: break can be used in switch
statements and loops (while, do, and for),
whereas continue is limited to loops.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 6: Loops

The continue Statement
•  A loop that uses the continue statement:
 n = 0;
 sum = 0;
 while (n < 10) {
 scanf("%d", &i);
 if (i == 0)
 continue;
 sum += i;
 n++;
 /* continue jumps to here */
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 6: Loops

The continue Statement
•  The same loop written without using continue:
 n = 0;
 sum = 0;
 while (n < 10) {
 scanf("%d", &i);
 if (i != 0) {
 sum += i;
 n++;
 }
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 6: Loops

The goto Statement
•  The goto statement is capable of jumping to any

statement in a function, provided that the statement has a
label.

•  A label is just an identifier placed at the beginning of a
statement:

 identifier : statement
•  A statement may have more than one label.
•  The goto statement itself has the form
 goto identifier ;

•  Executing the statement goto L; transfers control to the
statement that follows the label L, which must be in the
same function as the goto statement itself.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 6: Loops

The goto Statement
•  If C didn’t have a break statement, a goto

statement could be used to exit from a loop:
 for (d = 2; d < n; d++)
 if (n % d == 0)
 goto done;
 done:
 if (d < n)
 printf("%d is divisible by %d\n", n, d);
 else
 printf("%d is prime\n", n);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 6: Loops

The goto Statement
•  The goto statement is rarely needed in everyday

C programming.
•  The break, continue, and return statements

—which are essentially restricted goto
statements—and the exit function are sufficient
to handle most situations that might require a
goto in other languages.

•  Nonetheless, the goto statement can be helpful
once in a while.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 6: Loops

The goto Statement
•  Consider the problem of exiting a loop from within a
switch statement.

•  The break statement doesn’t have the desired effect: it exits
from the switch, but not from the loop.

•  A goto statement solves the problem:
 while (…) {
 switch (…) {
 …
 goto loop_done; /* break won't work here */
 …
 }
 }
 loop_done: …

•  The goto statement is also useful for exiting from nested
loops.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 6: Loops

Program: Balancing a Checkbook
•  Many simple interactive programs present the user with a

list of commands to choose from.
•  Once a command is entered, the program performs the

desired action, then prompts the user for another
command.

•  This process continues until the user selects an “exit” or
“quit” command.

•  The heart of such a program will be a loop:
 for (;;) {
 prompt user to enter command;
 read command;
 execute command;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 6: Loops

Program: Balancing a Checkbook
•  Executing the command will require a switch

statement (or cascaded if statement):
 for (;;) {
 prompt user to enter command;
 read command;
 switch (command) {
 case command1: perform operation1; break;
 case command2: perform operation2; break; .
 .
 .
 case commandn: perform operationn; break;
 default: print error message; break;
 }
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 6: Loops

Program: Balancing a Checkbook
•  The checking.c program, which maintains a

checkbook balance, uses a loop of this type.
•  The user is allowed to clear the account balance,

credit money to the account, debit money from the
account, display the current balance, and exit the
program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 6: Loops

Program: Balancing a Checkbook
*** ACME checkbook-balancing program ***
Commands: 0=clear, 1=credit, 2=debit, 3=balance, 4=exit

Enter command: 1
Enter amount of credit: 1042.56
Enter command: 2
Enter amount of debit: 133.79
Enter command: 1
Enter amount of credit: 1754.32
Enter command: 2
Enter amount of debit: 1400
Enter command: 2
Enter amount of debit: 68
Enter command: 2
Enter amount of debit: 50
Enter command: 3
Current balance: $1145.09
Enter command: 4

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

Chapter 6: Loops

checking.c

/* Balances a checkbook */

#include <stdio.h>

int main(void)
{
 int cmd;
 float balance = 0.0f, credit, debit;

 printf("*** ACME checkbook-balancing program ***\n");
 printf("Commands: 0=clear, 1=credit, 2=debit, ");
 printf("3=balance, 4=exit\n\n");
 for (;;) {
 printf("Enter command: ");
 scanf("%d", &cmd);
 switch (cmd) {
 case 0:
 balance = 0.0f;
 break;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 6: Loops

 case 1:
 printf("Enter amount of credit: ");
 scanf("%f", &credit);
 balance += credit;
 break;
 case 2:
 printf("Enter amount of debit: ");
 scanf("%f", &debit);
 balance -= debit;
 break;
 case 3:
 printf("Current balance: $%.2f\n", balance);
 break;
 case 4:
 return 0;
 default:
 printf("Commands: 0=clear, 1=credit, 2=debit, ");
 printf("3=balance, 4=exit\n\n");
 break;
 }
 }
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 6: Loops

The Null Statement
•  A statement can be null—devoid of symbols

except for the semicolon at the end.
•  The following line contains three statements:
 i = 0; ; j = 1;

•  The null statement is primarily good for one thing:
writing loops whose bodies are empty.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 6: Loops

The Null Statement
•  Consider the following prime-finding loop:
 for (d = 2; d < n; d++)
 if (n % d == 0)
 break;

•  If the n % d == 0 condition is moved into the
loop’s controlling expression, the body of the loop
becomes empty:

 for (d = 2; d < n && n % d != 0; d++)
 /* empty loop body */ ;

•  To avoid confusion, C programmers customarily
put the null statement on a line by itself.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

60

Chapter 6: Loops

The Null Statement
•  Accidentally putting a semicolon after the parentheses in an if,

while, or for statement creates a null statement.
•  Example 1:
 if (d == 0); /*** WRONG ***/
 printf("Error: Division by zero\n");

 The call of printf isn’t inside the if statement, so it’s
performed regardless of whether d is equal to 0.

•  Example 2:
 i = 10;
 while (i > 0); /*** WRONG ***/
 {
 printf("T minus %d and counting\n", i);
 --i;
 }

 The extra semicolon creates an infinite loop.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

61

Chapter 6: Loops

The Null Statement
•  Example 3:
 i = 11;
 while (--i > 0); /*** WRONG ***/
 printf("T minus %d and counting\n", i);

 The loop body is executed only once; the message printed is:
 T minus 0 and counting

•  Example 4:
 for (i = 10; i > 0; i--); /*** WRONG ***/
 printf("T minus %d and counting\n", i);

 Again, the loop body is executed only once, and the same
message is printed as in Example 3.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

62

