
Chapter 7: Basic Types

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 7

Basic Types

Chapter 7: Basic Types

Basic Types
•  C’s basic (built-in) types:

–  Integer types, including long integers, short integers,
and unsigned integers

–  Floating types (float, double, and long double)
–  char
–  _Bool (C99)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 7: Basic Types

Integer Types
•  C supports two fundamentally different kinds of

numeric types: integer types and floating types.
•  Values of an integer type are whole numbers.
•  Values of a floating type can have a fractional part

as well.
•  The integer types, in turn, are divided into two

categories: signed and unsigned.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 7: Basic Types

Signed and Unsigned Integers
•  The leftmost bit of a signed integer (known as the sign bit) is

0 if the number is positive or zero, 1 if it’s negative.
•  The largest 16-bit integer has the binary representation

0111111111111111, which has the value 32,767 (215 – 1).
•  The largest 32-bit integer is

 01111111111111111111111111111111
 which has the value 2,147,483,647 (231 – 1).

•  An integer with no sign bit (the leftmost bit is considered part
of the number’s magnitude) is said to be unsigned.

•  The largest 16-bit unsigned integer is 65,535 (216 – 1).
•  The largest 32-bit unsigned integer is 4,294,967,295 (232 – 1).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 7: Basic Types

Signed and Unsigned Integers
•  By default, integer variables are signed in C—the

leftmost bit is reserved for the sign.
•  To tell the compiler that a variable has no sign bit,

declare it to be unsigned.
•  Unsigned numbers are primarily useful for

systems programming and low-level, machine-
dependent applications.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 7: Basic Types

Integer Types
•  The int type is usually 32 bits, but may be 16 bits on older

CPUs.
•  Long integers may have more bits than ordinary integers;

short integers may have fewer bits.
•  The specifiers long and short, as well as signed and
unsigned, can be combined with int to form integer types.

•  Only six combinations produce different types:
 short int unsigned short int
 int unsigned int
 long int unsigned long int

•  The order of the specifiers doesn’t matter. Also, the word
int can be dropped (long int can be abbreviated to just
long).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 7: Basic Types

Integer Types
•  The range of values represented by each of the six

integer types varies from one machine to another.
•  However, the C standard requires that short
int, int, and long int must each cover a
certain minimum range of values.

•  Also, int must not be shorter than short int,
and long int must not be shorter than int.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 7: Basic Types

Integer Types
•  Typical ranges of values for the integer types on a

16-bit machine:
 Type Smallest Value Largest

Value
 short int –32,768 32,767
 unsigned short int 0 65,535
 int –32,768 32,767
 unsigned int 0 65,535
 long int –2,147,483,648 2,147,483,647
 unsigned long int 0 4,294,967,295

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 7: Basic Types

Integer Types
•  Typical ranges on a 32-bit machine:
 Type Smallest Value Largest

Value
 short int –32,768 32,767
 unsigned short int 0 65,535
 int –2,147,483,648 2,147,483,647
 unsigned int 0 4,294,967,295
 long int –2,147,483,648 2,147,483,647
 unsigned long int 0 4,294,967,295

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 7: Basic Types

Integer Types
•  Typical ranges on a 64-bit machine:

 Type Smallest Value Largest Value
 short int –32,768 32,767
 unsigned short int 0 65,535
 int –2,147,483,648 2,147,483,647
 unsigned int 0 4,294,967,295
 long int –263 263–1
 unsigned long int 0 264–1

•  The <limits.h> header defines macros that
represent the smallest and largest values of each
integer type.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 7: Basic Types

Integer Types in C99
•  C99 provides two additional standard integer types,
long long int and unsigned long long int.

•  Both long long types are required to be at least 64
bits wide.

•  The range of long long int values is typically –263
(–9,223,372,036,854,775,808) to 263 – 1
(9,223,372,036,854,775,807).

•  The range of unsigned long long int values is
usually 0 to 264 – 1 (18,446,744,073,709,551,615).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 7: Basic Types

Integer Types in C99
•  The short int, int, long int, and long long
int types (along with the signed char type) are
called standard signed integer types in C99.

•  The unsigned short int, unsigned int,
unsigned long int, and unsigned long long
int types (along with the unsigned char type and
the _Bool type) are called standard unsigned integer
types.

•  In addition to the standard integer types, the C99
standard allows implementation-defined extended
integer types, both signed and unsigned.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 7: Basic Types

Integer Constants
•  Constants are numbers that appear in the text of a

program.
•  C allows integer constants to be written in decimal

(base 10), octal (base 8), or hexadecimal (base
16).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 7: Basic Types

Octal and Hexadecimal Numbers
•  Octal numbers use only the digits 0 through 7.
•  Each position in an octal number represents a

power of 8.
–  The octal number 237 represents the decimal number

2 × 82 + 3 × 81 + 7 × 80 = 128 + 24 + 7 = 159.
•  A hexadecimal (or hex) number is written using

the digits 0 through 9 plus the letters A through F,
which stand for 10 through 15, respectively.
–  The hex number 1AF has the decimal value 1 × 162 +

10 × 161 + 15 × 160 = 256 + 160 + 15 = 431.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 7: Basic Types

Integer Constants
•  Decimal constants contain digits between 0 and 9, but

must not begin with a zero:
 15 255 32767

•  Octal constants contain only digits between 0 and 7, and
must begin with a zero:

 017 0377 077777

•  Hexadecimal constants contain digits between 0 and 9 and
letters between a and f, and always begin with 0x:

 0xf 0xff 0x7fff

•  The letters in a hexadecimal constant may be either upper
or lower case:

 0xff 0xfF 0xFf 0xFF 0Xff 0XfF 0XFf 0XFF
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 7: Basic Types

Integer Constants
•  The type of a decimal integer constant is normally int.
•  If the value of the constant is too large to store as an
int, the constant has type long int instead.

•  If the constant is too large to store as a long int, the
compiler will try unsigned long int as a last
resort.

•  For an octal or hexadecimal constant, the rules are
slightly different: the compiler will go through the
types int, unsigned int, long int, and
unsigned long int until it finds one capable of
representing the constant.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 7: Basic Types

Integer Constants
•  To force the compiler to treat a constant as a long

integer, just follow it with the letter L (or l):
 15L 0377L 0x7fffL

•  To indicate that a constant is unsigned, put the
letter U (or u) after it:

 15U 0377U 0x7fffU

•  L and U may be used in combination:
 0xffffffffUL

 The order of the L and U doesn’t matter, nor does
their case.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 7: Basic Types

Integer Constants in C99
•  In C99, integer constants that end with either LL or ll (the

case of the two letters must match) have type long long
int.

•  Adding the letter U (or u) before or after the LL or ll
denotes a constant of type unsigned long long int.

•  C99’s general rules for determining the type of an integer
constant are a bit different from those in C89.

•  The type of a decimal constant with no suffix (U, u, L, l,
LL, or ll) is the “smallest” of the types int, long int,
or long long int that can represent the value of that
constant.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 7: Basic Types

Integer Constants in C99
•  For an octal or hexadecimal constant, the list of

possible types is int, unsigned int, long int,
unsigned long int, long long int, and
unsigned long long int, in that order.

•  Any suffix at the end of a constant changes the list of
possible types.
–  A constant that ends with U (or u) must have one of the

types unsigned int, unsigned long int, or
unsigned long long int.

–  A decimal constant that ends with L (or l) must have one of
the types long int or long long int.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 7: Basic Types

Integer Overflow
•  When arithmetic operations are performed on

integers, it’s possible that the result will be too
large to represent.

•  For example, when an arithmetic operation is
performed on two int values, the result must be
able to be represented as an int.

•  If the result can’t be represented as an int
(because it requires too many bits), we say that
overflow has occurred.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 7: Basic Types

Integer Overflow
•  The behavior when integer overflow occurs

depends on whether the operands were signed or
unsigned.
–  When overflow occurs during an operation on signed

integers, the program’s behavior is undefined.
–  When overflow occurs during an operation on unsigned

integers, the result is defined: we get the correct answer
modulo 2n, where n is the number of bits used to store
the result.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 7: Basic Types

Reading and Writing Integers
•  Reading and writing unsigned, short, and long integers

requires new conversion specifiers.
•  When reading or writing an unsigned integer, use the

letter u, o, or x instead of d in the conversion
specification.

 unsigned int u;

 scanf("%u", &u); /* reads u in base 10 */
 printf("%u", u); /* writes u in base 10 */
 scanf("%o", &u); /* reads u in base 8 */
 printf("%o", u); /* writes u in base 8 */
 scanf("%x", &u); /* reads u in base 16 */
 printf("%x", u); /* writes u in base 16 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 7: Basic Types

Reading and Writing Integers
•  When reading or writing a short integer, put the

letter h in front of d, o, u, or x:
 short s;

 scanf("%hd", &s);
 printf("%hd", s);

•  When reading or writing a long integer, put the
letter l (“ell,” not “one”) in front of d, o, u, or x.

•  When reading or writing a long long integer (C99
only), put the letters ll in front of d, o, u, or x.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 7: Basic Types

Program: Summing a Series
of Numbers (Revisited)

•  The sum.c program (Chapter 6) sums a series of integers.
•  One problem with this program is that the sum (or one of

the input numbers) might exceed the largest value allowed
for an int variable.

•  Here’s what might happen if the program is run on a
machine whose integers are 16 bits long:

 This program sums a series of integers.
 Enter integers (0 to terminate): 10000 20000 30000 0
 The sum is: -5536

•  When overflow occurs with signed numbers, the outcome
is undefined.

•  The program can be improved by using long variables.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 7: Basic Types

sum2.c

/* Sums a series of numbers (using long variables) */

#include <stdio.h>

int main(void)
{
 long n, sum = 0;

 printf("This program sums a series of integers.\n");
 printf("Enter integers (0 to terminate): ");

 scanf("%ld", &n);
 while (n != 0) {
 sum += n;
 scanf("%ld", &n);
 }
 printf("The sum is: %ld\n", sum);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 7: Basic Types

Floating Types
•  C provides three floating types, corresponding to

different floating-point formats:
–  float Single-precision floating-point
–  double Double-precision floating-point
–  long double Extended-precision floating-point

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 7: Basic Types

Floating Types
•  float is suitable when the amount of precision isn’t

critical.
•  double provides enough precision for most

programs.
•  long double is rarely used.
•  The C standard doesn’t state how much precision the
float, double, and long double types provide,
since that depends on how numbers are stored.

•  Most modern computers follow the specifications in
IEEE Standard 754 (also known as IEC 60559).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 7: Basic Types

The IEEE Floating-Point Standard
•  IEEE Standard 754 was developed by the Institute of

Electrical and Electronics Engineers.
•  It has two primary formats for floating-point numbers:

single precision (32 bits) and double precision (64 bits).
•  Numbers are stored in a form of scientific notation,

with each number having a sign, an exponent, and a
fraction.

•  In single-precision format, the exponent is 8 bits long,
while the fraction occupies 23 bits. The maximum
value is approximately 3.40 × 1038, with a precision of
about 6 decimal digits.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 7: Basic Types

Floating Types
•  Characteristics of float and double when

implemented according to the IEEE standard:
 Type Smallest Positive Value Largest Value

 Precision
 float 1.17549 × 10–38 3.40282 × 1038 6 digits
 double 2.22507 × 10–308 1.79769 × 10308 15 digits

•  On computers that don’t follow the IEEE
standard, this table won’t be valid.

•  In fact, on some machines, float may have the
same set of values as double, or double may
have the same values as long double.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 7: Basic Types

Floating Types
•  Macros that define the characteristics of the

floating types can be found in the <float.h>
header.

•  In C99, the floating types are divided into two
categories.
–  Real floating types (float, double, long double)
–  Complex types (float _Complex, double
_Complex, long double _Complex)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 7: Basic Types

Floating Constants
•  Floating constants can be written in a variety of ways.
•  Valid ways of writing the number 57.0:
 57.0 57. 57.0e0 57E0 5.7e1 5.7e+1
 .57e2 570.e-1

•  A floating constant must contain a decimal point and/
or an exponent; the exponent indicates the power of
10 by which the number is to be scaled.

•  If an exponent is present, it must be preceded by the
letter E (or e). An optional + or - sign may appear
after the E (or e).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 7: Basic Types

Floating Constants
•  By default, floating constants are stored as double-

precision numbers.
•  To indicate that only single precision is desired,

put the letter F (or f) at the end of the constant
(for example, 57.0F).

•  To indicate that a constant should be stored in
long double format, put the letter L (or l) at
the end (57.0L).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 7: Basic Types

Reading and Writing
Floating-Point Numbers

•  The conversion specifications %e, %f, and %g are used for
reading and writing single-precision floating-point numbers.

•  When reading a value of type double, put the letter l in
front of e, f, or g:

 double d;

 scanf("%lf", &d);

•  Note: Use l only in a scanf format string, not a printf
string.

•  In a printf format string, the e, f, and g conversions can
be used to write either float or double values.

•  When reading or writing a value of type long double, put
the letter L in front of e, f, or g.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 7: Basic Types

Character Types
•  The only remaining basic type is char, the

character type.
•  The values of type char can vary from one

computer to another, because different machines
may have different underlying character sets.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 7: Basic Types

Character Sets
•  Today’s most popular character set is ASCII

(American Standard Code for Information
Interchange), a 7-bit code capable of representing
128 characters.

•  ASCII is often extended to a 256-character code
known as Latin-1 that provides the characters
necessary for Western European and many
African languages.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 7: Basic Types

Character Sets
•  A variable of type char can be assigned any

single character:
 char ch;

 ch = 'a'; /* lower-case a */
 ch = 'A'; /* upper-case A */
 ch = '0'; /* zero */
 ch = ' '; /* space */

•  Notice that character constants are enclosed in
single quotes, not double quotes.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 7: Basic Types

Operations on Characters
•  Working with characters in C is simple, because

of one fact: C treats characters as small integers.
•  In ASCII, character codes range from 0000000 to

1111111, which we can think of as the integers
from 0 to 127.

•  The character 'a' has the value 97, 'A' has the
value 65, '0' has the value 48, and ' ' has the
value 32.

•  Character constants actually have int type rather
than char type.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 7: Basic Types

Operations on Characters
•  When a character appears in a computation, C

uses its integer value.
•  Consider the following examples, which assume

the ASCII character set:
 char ch;
 int i;

 i = 'a'; /* i is now 97 */
 ch = 65; /* ch is now 'A' */
 ch = ch + 1; /* ch is now 'B' */
 ch++; /* ch is now 'C' */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 7: Basic Types

Operations on Characters
•  Characters can be compared, just as numbers can.
•  An if statement that converts a lower-case letter

to upper case:
 if ('a' <= ch && ch <= 'z')
 ch = ch - 'a' + 'A';

•  Comparisons such as 'a' <= ch are done using
the integer values of the characters involved.

•  These values depend on the character set in use, so
programs that use <, <=, >, and >= to compare
characters may not be portable.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 7: Basic Types

Operations on Characters
•  The fact that characters have the same properties as

numbers has advantages.
•  For example, it is easy to write a for statement whose

control variable steps through all the upper-case letters:
 for (ch = 'A'; ch <= 'Z'; ch++) …

•  Disadvantages of treating characters as numbers:
–  Can lead to errors that won’t be caught by the compiler.
–  Allows meaningless expressions such as'a' * 'b' / 'c'.
–  Can hamper portability, since programs may rely on

assumptions about the underlying character set.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 7: Basic Types

Signed and Unsigned Characters
•  The char type—like the integer types—exists in both

signed and unsigned versions.
•  Signed characters normally have values between –128

and 127. Unsigned characters have values between 0 and
255.

•  Some compilers treat char as a signed type, while
others treat it as an unsigned type. Most of the time, it
doesn’t matter.

•  C allows the use of the words signed and unsigned
to modify char:

 signed char sch;
 unsigned char uch;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 7: Basic Types

Signed and Unsigned Characters
•  C89 uses the term integral types to refer to both

the integer types and the character types.
•  Enumerated types are also integral types.
•  C99 doesn’t use the term “integral types.”
•  Instead, it expands the meaning of “integer types”

to include the character types and the enumerated
types.

•  C99’s _Bool type is considered to be an
unsigned integer type.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 7: Basic Types

Arithmetic Types
•  The integer types and floating types are

collectively known as arithmetic types.
•  A summary of the arithmetic types in C89, divided

into categories and subcategories:
–  Integral types

• char
•  Signed integer types (signed char, short int, int,
long int)

•  Unsigned integer types (unsigned char, unsigned
short int, unsigned int, unsigned long int)

•  Enumerated types

–  Floating types (float, double, long double)
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 7: Basic Types

Arithmetic Types
•  C99 has a more complicated hierarchy:

–  Integer types
• char
•  Signed integer types, both standard (signed char, short
int, int, long int, long long int) and extended

•  Unsigned integer types, both standard (unsigned char,
unsigned short int, unsigned int, unsigned long
int, unsigned long long int, _Bool) and extended

•  Enumerated types

–  Floating types
•  Real floating types (float, double, long double)
•  Complex types (float _Complex, double _Complex,
long double _Complex)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 7: Basic Types

Escape Sequences
•  A character constant is usually one character

enclosed in single quotes.
•  However, certain special characters—including

the new-line character—can’t be written in this
way, because they’re invisible (nonprinting) or
because they can’t be entered from the keyboard.

•  Escape sequences provide a way to represent
these characters.

•  There are two kinds of escape sequences:
character escapes and numeric escapes.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 7: Basic Types

Escape Sequences
•  A complete list of character escapes:

 Name Escape Sequence
 Alert (bell) \a
 Backspace \b
 Form feed \f
 New line \n
 Carriage return \r
 Horizontal tab \t
 Vertical tab \v
 Backslash \\
 Question mark \?
 Single quote \'
 Double quote \"

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 7: Basic Types

Escape Sequences
•  Character escapes are handy, but they don’t exist

for all nonprinting ASCII characters.
•  Character escapes are also useless for representing

characters beyond the basic 128 ASCII characters.
•  Numeric escapes, which can represent any

character, are the solution to this problem.
•  A numeric escape for a particular character uses

the character’s octal or hexadecimal value.
•  For example, the ASCII escape character (decimal

value: 27) has the value 33 in octal and 1B in hex.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 7: Basic Types

Escape Sequences
•  An octal escape sequence consists of the \

character followed by an octal number with at
most three digits, such as \33 or \033.

•  A hexadecimal escape sequence consists of \x
followed by a hexadecimal number, such as \x1b
or \x1B.

•  The x must be in lower case, but the hex digits can
be upper or lower case.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 7: Basic Types

Escape Sequences
•  When used as a character constant, an escape

sequence must be enclosed in single quotes.
•  For example, a constant representing the escape

character would be written '\33' (or '\x1b').
•  Escape sequences tend to get a bit cryptic, so it’s

often a good idea to use #define to give them
names:

 #define ESC '\33'

•  Escape sequences can be embedded in strings as
well.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 7: Basic Types

Character-Handling Functions
•  Calling C’s toupper library function is a fast

and portable way to convert case:
 ch = toupper(ch);

•  toupper returns the upper-case version of its
argument.

•  Programs that call toupper need to have the
following #include directive at the top:

 #include <ctype.h>

•  The C library provides many other useful
character-handling functions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 7: Basic Types

Reading and Writing Characters
Using scanf and printf

•  The %c conversion specification allows scanf and
printf to read and write single characters:

 char ch;

 scanf("%c", &ch); /* reads one character */
 printf("%c", ch); /* writes one character */

•  scanf doesn’t skip white-space characters.
•  To force scanf to skip white space before reading a

character, put a space in its format string just before %c:
 scanf(" %c", &ch);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 7: Basic Types

Reading and Writing Characters
Using scanf and printf

•  Since scanf doesn’t normally skip white space,
it’s easy to detect the end of an input line: check
to see if the character just read is the new-line
character.

•  A loop that reads and ignores all remaining
characters in the current input line:

 do {
 scanf("%c", &ch);
 } while (ch != '\n');

•  When scanf is called the next time, it will read
the first character on the next input line.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 7: Basic Types

Reading and Writing Characters
Using getchar and putchar

•  For single-character input and output, getchar and
putchar are an alternative to scanf and printf.

•  putchar writes a character:
 putchar(ch);

•  Each time getchar is called, it reads one character,
which it returns:

 ch = getchar();

•  getchar returns an int value rather than a char
value, so ch will often have type int.

•  Like scanf, getchar doesn’t skip white-space
characters as it reads.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 7: Basic Types

Reading and Writing Characters
Using getchar and putchar

•  Using getchar and putchar (rather than
scanf and printf) saves execution time.
–  getchar and putchar are much simpler than
scanf and printf, which are designed to read and
write many kinds of data in a variety of formats.

–  They are usually implemented as macros for additional
speed.

•  getchar has another advantage. Because it
returns the character that it reads, getchar lends
itself to various C idioms.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 7: Basic Types

Reading and Writing Characters
Using getchar and putchar

•  Consider the scanf loop that we used to skip the
rest of an input line:

 do {
 scanf("%c", &ch);
 } while (ch != '\n');

•  Rewriting this loop using getchar gives us the
following:

 do {
 ch = getchar();
 } while (ch != '\n');

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 7: Basic Types

Reading and Writing Characters
Using getchar and putchar

•  Moving the call of getchar into the controlling
expression allows us to condense the loop:

 while ((ch = getchar()) != '\n')
 ;

•  The ch variable isn’t even needed; we can just
compare the return value of getchar with the
new-line character:

 while (getchar() != '\n')
 ;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

Chapter 7: Basic Types

Reading and Writing Characters
Using getchar and putchar

•  getchar is useful in loops that skip characters as
well as loops that search for characters.

•  A statement that uses getchar to skip an
indefinite number of blank characters:

 while ((ch = getchar()) == ' ')
 ;

•  When the loop terminates, ch will contain the first
nonblank character that getchar encountered.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 7: Basic Types

Reading and Writing Characters
Using getchar and putchar

•  Be careful when mixing getchar and scanf.
•  scanf has a tendency to leave behind characters that it

has “peeked” at but not read, including the new-line
character:

 printf("Enter an integer: ");
 scanf("%d", &i);
 printf("Enter a command: ");
 command = getchar();

 scanf will leave behind any characters that weren’t
consumed during the reading of i, including (but not
limited to) the new-line character.

•  getchar will fetch the first leftover character.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 7: Basic Types

Program: Determining the
Length of a Message

•  The length.c program displays the length of a message
entered by the user:

 Enter a message: Brevity is the soul of wit.
 Your message was 27 character(s) long.

•  The length includes spaces and punctuation, but not the
new-line character at the end of the message.

•  We could use either scanf or getchar to read
characters; most C programmers would choose getchar.

•  length2.c is a shorter program that eliminates the
variable used to store the character read by getchar.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 7: Basic Types

length.c

/* Determines the length of a message */

#include <stdio.h>

int main(void)
{
 char ch;
 int len = 0;

 printf("Enter a message: ");
 ch = getchar();
 while (ch != '\n') {
 len++;
 ch = getchar();
 }
 printf("Your message was %d character(s) long.\n", len);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

60

Chapter 7: Basic Types

length2.c

/* Determines the length of a message */

#include <stdio.h>

int main(void)
{
 int len = 0;

 printf("Enter a message: ");
 while (getchar() != '\n')
 len++;
 printf("Your message was %d character(s) long.\n", len);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

61

Chapter 7: Basic Types

Type Conversion
•  For a computer to perform an arithmetic operation, the

operands must usually be of the same size (the same
number of bits) and be stored in the same way.

•  When operands of different types are mixed in
expressions, the C compiler may have to generate
instructions that change the types of some operands so
that hardware will be able to evaluate the expression.
–  If we add a 16-bit short and a 32-bit int, the compiler

will arrange for the short value to be converted to 32 bits.
–  If we add an int and a float, the compiler will arrange

for the int to be converted to float format.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

62

Chapter 7: Basic Types

Type Conversion
•  Because the compiler handles these conversions

automatically, without the programmer’s
involvement, they’re known as implicit
conversions.

•  C also allows the programmer to perform explicit
conversions, using the cast operator.

•  The rules for performing implicit conversions are
somewhat complex, primarily because C has so
many different arithmetic types.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

63

Chapter 7: Basic Types

Type Conversion
•  Implicit conversions are performed:

–  When the operands in an arithmetic or logical expression
don’t have the same type. (C performs what are known as
the usual arithmetic conversions.)

–  When the type of the expression on the right side of an
assignment doesn’t match the type of the variable on the
left side.

–  When the type of an argument in a function call doesn’t
match the type of the corresponding parameter.

–  When the type of the expression in a return statement
doesn’t match the function’s return type.

•  Chapter 9 discusses the last two cases.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

64

Chapter 7: Basic Types

The Usual Arithmetic Conversions
•  The usual arithmetic conversions are applied to the operands

of most binary operators.
•  If f has type float and i has type int, the usual

arithmetic conversions will be applied to the operands in the
expression f + i.

•  Clearly it’s safer to convert i to type float (matching f’s
type) rather than convert f to type int (matching i’s type).
–  When an integer is converted to float, the worst that can happen is

a minor loss of precision.
–  Converting a floating-point number to int, on the other hand,

causes the fractional part of the number to be lost. Worse still, the
result will be meaningless if the original number is larger than the
largest possible integer or smaller than the smallest integer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

65

Chapter 7: Basic Types

The Usual Arithmetic Conversions
•  Strategy behind the usual arithmetic conversions: convert

operands to the “narrowest” type that will safely
accommodate both values.

•  Operand types can often be made to match by converting the
operand of the narrower type to the type of the other operand
(this act is known as promotion).

•  Common promotions include the integral promotions, which
convert a character or short integer to type int (or to
unsigned int in some cases).

•  The rules for performing the usual arithmetic conversions can
be divided into two cases:
–  The type of either operand is a floating type.
–  Neither operand type is a floating type.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

66

Chapter 7: Basic Types

The Usual Arithmetic Conversions
•  The type of either operand is a floating type.

–  If one operand has type long double, then convert
the other operand to type long double.

–  Otherwise, if one operand has type double, convert
the other operand to type double.

–  Otherwise, if one operand has type float, convert the
other operand to type float.

•  Example: If one operand has type long int and
the other has type double, the long int
operand is converted to double.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

67

Chapter 7: Basic Types

The Usual Arithmetic Conversions
•  Neither operand type is a floating type. First

perform integral promotion on both operands.
•  Then use the following diagram to promote the

operand whose type is narrower:
unsigned long int

long int

unsigned int

int

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

68

Chapter 7: Basic Types

The Usual Arithmetic Conversions
•  When a signed operand is combined with an

unsigned operand, the signed operand is converted
to an unsigned value.

•  This rule can cause obscure programming errors.
•  It’s best to use unsigned integers as little as

possible and, especially, never mix them with
signed integers.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

69

Chapter 7: Basic Types

The Usual Arithmetic Conversions
•  Example of the usual arithmetic conversions:
 char c;
 short int s;
 int i;
 unsigned int u;
 long int l;
 unsigned long int ul;
 float f;
 double d;
 long double ld;

 i = i + c; /* c is converted to int */
 i = i + s; /* s is converted to int */
 u = u + i; /* i is converted to unsigned int */
 l = l + u; /* u is converted to long int */
 ul = ul + l; /* l is converted to unsigned long int */
 f = f + ul; /* ul is converted to float */
 d = d + f; /* f is converted to double */
 ld = ld + d; /* d is converted to long double */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

70

Chapter 7: Basic Types

Conversion During Assignment
•  The usual arithmetic conversions don’t apply to

assignment.
•  Instead, the expression on the right side of the

assignment is converted to the type of the variable on
the left side:

 char c;
 int i;
 float f;
 double d;

 i = c; /* c is converted to int */
 f = i; /* i is converted to float */
 d = f; /* f is converted to double */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

71

Chapter 7: Basic Types

Conversion During Assignment
•  Assigning a floating-point number to an integer

variable drops the fractional part of the number:
 int i;

 i = 842.97; /* i is now 842 */
 i = -842.97; /* i is now -842 */

•  Assigning a value to a variable of a narrower type
will give a meaningless result (or worse) if the
value is outside the range of the variable’s type:

 c = 10000; /*** WRONG ***/
 i = 1.0e20; /*** WRONG ***/
 f = 1.0e100; /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

72

Chapter 7: Basic Types

Conversion During Assignment
•  It’s a good idea to append the f suffix to a

floating-point constant if it will be assigned to a
float variable:

 f = 3.14159f;

•  Without the suffix, the constant 3.14159 would
have type double, possibly causing a warning
message.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

73

Chapter 7: Basic Types

Implicit Conversions in C99
•  C99’s rules for implicit conversions are somewhat different.
•  Each integer type has an “integer conversion rank.”
•  Ranks from highest to lowest:

1. long long int, unsigned long long int
2. long int, unsigned long int
3. int, unsigned int
4. short int, unsigned short int
5. char, signed char, unsigned char
6. _Bool

•  C99’s “integer promotions” involve converting any type
whose rank is less than int and unsigned int to int
(provided that all values of the type can be represented using
int) or else to unsigned int.

 Copyright © 2008 W. W. Norton & Company.
All rights reserved.

74

Chapter 7: Basic Types

Implicit Conversions in C99
•  C99’s rules for performing the usual arithmetic

conversions can be divided into two cases:
–  The type of either operand is a floating type.
–  Neither operand type is a floating type.

•  The type of either operand is a floating type. As
long as neither operand has a complex type, the
rules are the same as before. (The conversion rules
for complex types are discussed in Chapter 27.)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

75

Chapter 7: Basic Types

Implicit Conversions in C99
•  Neither operand type is a floating type. Perform integer

promotion on both operands. Stop if the types of the operands
are now the same. Otherwise, use the following rules:
–  If both operands have signed types or both have unsigned types,

convert the operand whose type has lesser integer conversion rank
to the type of the operand with greater rank.

–  If the unsigned operand has rank greater or equal to the rank of the
type of the signed operand, convert the signed operand to the type
of the unsigned operand.

–  If the type of the signed operand can represent all of the values of
the type of the unsigned operand, convert the unsigned operand to
the type of the signed operand.

–  Otherwise, convert both operands to the unsigned type
corresponding to the type of the signed operand.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

76

Chapter 7: Basic Types

Implicit Conversions in C99
•  All arithmetic types can be converted to _Bool

type. The result of the conversion is 0 if the
original value is 0; otherwise, the result is 1.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

77

Chapter 7: Basic Types

Casting
•  Although C’s implicit conversions are convenient,

we sometimes need a greater degree of control
over type conversion.

•  For this reason, C provides casts.
•  A cast expression has the form
 (type-name) expression
 type-name specifies the type to which the
expression should be converted.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

78

Chapter 7: Basic Types

Casting
•  Using a cast expression to compute the fractional

part of a float value:
 float f, frac_part;

 frac_part = f - (int) f;

•  The difference between f and (int) f is the
fractional part of f, which was dropped during the
cast.

•  Cast expressions enable us to document type
conversions that would take place anyway:

 i = (int) f; /* f is converted to int */

 Copyright © 2008 W. W. Norton & Company.
All rights reserved.

79

Chapter 7: Basic Types

Casting
•  Cast expressions also let us force the compiler to

perform conversions.
•  Example:
 float quotient;
 int dividend, divisor;

 quotient = dividend / divisor;

•  To avoid truncation during division, we need to cast
one of the operands:

 quotient = (float) dividend / divisor;

•  Casting dividend to float causes the compiler to
convert divisor to float also.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

80

Chapter 7: Basic Types

Casting
•  C regards (type-name) as a unary operator.
•  Unary operators have higher precedence than

binary operators, so the compiler interprets
 (float) dividend / divisor

 as
 ((float) dividend) / divisor

•  Other ways to accomplish the same effect:
 quotient = dividend / (float) divisor;
 quotient = (float) dividend / (float) divisor;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

81

Chapter 7: Basic Types

Casting
•  Casts are sometimes necessary to avoid overflow:
 long i;
 int j = 1000;

 i = j * j; /* overflow may occur */

•  Using a cast avoids the problem:
 i = (long) j * j;

•  The statement
 i = (long) (j * j); /*** WRONG ***/

 wouldn’t work, since the overflow would already
have occurred by the time of the cast.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

82

Chapter 7: Basic Types

Type Definitions
•  The #define directive can be used to create a
“Boolean type” macro:

 #define BOOL int

•  There’s a better way using a feature known as a
type definition:

 typedef int Bool;

•  Bool can now be used in the same way as the
built-in type names.

•  Example:
 Bool flag; /* same as int flag; */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

83

Chapter 7: Basic Types

Advantages of Type Definitions
•  Type definitions can make a program more

understandable.
•  If the variables cash_in and cash_out will be

used to store dollar amounts, declaring Dollars
as

 typedef float Dollars;

 and then writing
 Dollars cash_in, cash_out;

 is more informative than just writing
 float cash_in, cash_out;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

84

Chapter 7: Basic Types

Advantages of Type Definitions
•  Type definitions can also make a program easier

to modify.
•  To redefine Dollars as double, only the type

definition need be changed:
 typedef double Dollars;

•  Without the type definition, we would need to
locate all float variables that store dollar
amounts and change their declarations.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

85

Chapter 7: Basic Types

Type Definitions and Portability
•  Type definitions are an important tool for writing

portable programs.
•  One of the problems with moving a program from

one computer to another is that types may have
different ranges on different machines.

•  If i is an int variable, an assignment like
 i = 100000;

 is fine on a machine with 32-bit integers, but will
fail on a machine with 16-bit integers.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

86

Chapter 7: Basic Types

Type Definitions and Portability
•  For greater portability, consider using typedef

to define new names for integer types.
•  Suppose that we’re writing a program that needs

variables capable of storing product quantities in
the range 0–50,000.

•  We could use long variables for this purpose, but
we’d rather use int variables, since arithmetic on
int values may be faster than operations on
long values. Also, int variables may take up
less space.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

87

Chapter 7: Basic Types

Type Definitions and Portability
•  Instead of using the int type to declare quantity

variables, we can define our own “quantity” type:
 typedef int Quantity;

 and use this type to declare variables:
 Quantity q;

•  When we transport the program to a machine with
shorter integers, we’ll change the type definition:

 typedef long Quantity;

•  Note that changing the definition of Quantity
may affect the way Quantity variables are used.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

88

Chapter 7: Basic Types

Type Definitions and Portability
•  The C library itself uses typedef to create

names for types that can vary from one C
implementation to another; these types often have
names that end with _t.

•  Typical definitions of these types:
 typedef long int ptrdiff_t;
 typedef unsigned long int size_t;
 typedef int wchar_t;

•  In C99, the <stdint.h> header uses typedef
to define names for integer types with a particular
number of bits.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

89

Chapter 7: Basic Types

The sizeof Operator
•  The value of the expression
 sizeof (type-name)
 is an unsigned integer representing the number of
bytes required to store a value belonging to type-
name.

•  sizeof(char) is always 1, but the sizes of the
other types may vary.

•  On a 32-bit machine, sizeof(int) is normally
4.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

90

Chapter 7: Basic Types

The sizeof Operator
•  The sizeof operator can also be applied to

constants, variables, and expressions in general.
–  If i and j are int variables, then sizeof(i) is 4 on a 32-

bit machine, as is sizeof(i + j).

•  When applied to an expression—as opposed to a type
—sizeof doesn’t require parentheses.
–  We could write sizeof i instead of sizeof(i).

•  Parentheses may be needed anyway because of
operator precedence.
–  The compiler interprets sizeof i + j as (sizeof i) +
j, because sizeof takes precedence over binary +.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

91

Chapter 7: Basic Types

The sizeof Operator
•  Printing a sizeof value requires care, because the type of

a sizeof expression is an implementation-defined type
named size_t.

•  In C89, it’s best to convert the value of the expression to a
known type before printing it:

 printf("Size of int: %lu\n",
 (unsigned long) sizeof(int));

•  The printf function in C99 can display a size_t value
directly if the letter z is included in the conversion
specification:

 printf("Size of int: %zu\n", sizeof(int));

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

92

