Chapter 10

Program Organization

C PROGRANMMING :

A Modern Approach secono eoirion

Local Variables

* A variable declared in the body of a function 1s
said to be local to the function:

int sum digits(int n)

{

int sum = 0; /* local variable */

while (n > 0)
sum += n
n /= 10
}

return sum;

}

C PROGRANMMING 2

A Modern Approach secono eoirion

Local Variables

» Default properties of local variables:

— Automatic storage duration. Storage 1s
“automatically” allocated when the enclosing function
1s called and deallocated when the function returns.

— Block scope. A local variable 1s visible from its point of
declaration to the end of the enclosing function body.

C PROGRANMMING 3

A Modern Approach stcono eoimion

Local Variables

» Since C99 doesn’ t require variable declarations to
come at the beginning of a function, it s possible
for a local variable to have a very small scope:

void f (void)

{

int 1i;

— scope of 1

C PROGRANMMING 4

A Modern Approach secono eoirion

Static Local Variables

Including static in the declaration of a local variable
causes 1t to have static storage duration.

A variable with static storage duration has a permanent
storage location, so it retains its value throughout the
execution of the program.

Example:

void f (void)

{

static int 1i; /* static local variable */

-

A static local variable still has block scope, so it’ s not
visible to other functions.

C PROGRANMMING 5

A Modern Approach stcono eoimion

Parameters

Parameters have the same properties—automatic
storage duration and block scope—as local
variables.

Each parameter 1s 1nitialized automatically when a
function 1s called (by being assigned the value of
the corresponding argument).

C PROGRANMMING 6

A Modern Approach stcono eoimion

External Variables

» Passing arguments 1s one way to transmit
information to a function.

* Functions can also communicate through external
variables—variables that are declared outside the
body of any function.

« External variables are sometimes known as global
variables.

C PROGRANMMING 7

A Modern Approach stcono eoimion

External Variables

» Properties of external variables:
— Static storage duration
— File scope
* Having file scope means that an external variable

1s visible from its point of declaration to the end of
the enclosing file.

C PROGRANMMING :

A Modern Approach stcono eoimion

Example: Using External Variables
to Implement a Stack

To 1llustrate how external variables might be used,
let’ s look at a data structure known as a stack.

A stack, like an array, can store multiple data
items of the same type.

The operations on a stack are limited:
— Push an item (add it to one end—the “stack top”)

— Pop an item (remove 1t from the same end)

Examining or modifying an item that’ s not at the
top of the stack is forbidden.

C PROGRANMMING 9

A Modern Approach secono eoirion

Example: Using External Variables
to Implement a Stack

One way to implement a stack in C 1s to store 1ts
items in an array, which we’ 1l call contents.

A separate integer variable named t op marks the
position of the stack top.

— When the stack 1s empty, top has the value O.

To push an 1item: Store it in contents at the
position indicated by top, then increment top.

To pop an item: Decrement t op, then use 1t as an
index into contents to fetch the item that’ s
being popped.

C PROGRANMMING 10

A Modern Approach secono eoirion

Example: Using External Variables
to Implement a Stack

* The following program fragment declares the
contents and top variables for a stack.

It also provides a set of functions that represent
stack operations.

» All five functions need access to the t op variable,
and two functions need access to contents, so
contents and top will be external.

C PROGRANMMING 11

A Modern Approach secono eoirion

Chapter 10: Program Organization

Example: Using External Variables
to Implement a Stack

#include <stdbool.h>

#define STACK SIZE 100

/* external variables */
int contents[STACK SIZE];

int top = 0;

void make empty (void)
{

top = 0;
}

bool 1s empty (void)
{

return top == 0;

}

C PROGRANMING

A Modern App?"OCZCh SECOND EDITION

/* C99 only */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Chapter 10: Program Organization

Example: Using External Variables
to Implement a Stack

bool is full (void)
{

}

return top == STACK SIZE;

vold push (int 1)

{
if (is full ()

stack overflow();
else

contents[top++] = 1i;

int pop (void)

{
1f (is _empty())

stack underflow();
else

return contents[--top];

C PROGRANMING

A Modern App?"OCZCh SECOND EDITION

13

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Pros and Cons of External Variables

« External variables are convenient when many functions
must share a variable or when a few functions share a
large number of variables.

« In most cases, it s better for functions to communicate
through parameters rather than by sharing variables:

— If we change an external variable during program maintenance
(by altering its type, say), we’ 1l need to check every function in
the same file to see how the change affects it.

— If an external variable 1s assigned an incorrect value, it may be
difficult to identify the guilty function.

— Functions that rely on external variables are hard to reuse in
other programs.

C PROGRANMMING 14

A Modern Approach stcono eoimion

Pros and Cons of External Variables

Don’ t use the same external variable for different
purposes 1n different functions.

Suppose that several functions need a variable
named i to control a for statement.

Instead of declaring i in each function that uses it,
some programmers declare it just once at the top
of the program.

This practice 1s misleading; someone reading the
program later may think that the uses of i are
related, when in fact they’ re not.

C PROGRANMMING 15

A Modern Approach stcono eoimion

Pros and Cons of External Variables

* Make sure that external variables have meaningful
names.

 Local variables don’ t always need meaningful
names: it’ s often hard to think of a better name
than i for the control variable in a for loop.

C PROGRANMMING 16

A Modern Approach secono eoirion

Pros and Cons of External Variables

« Making variables external when they should be local can lead to
some rather frustrating bugs.

e Code that 1s supposed to display a 10 x 10 arrangement of asterisks:
int 1i;
volid print one row(void)
for (1 = 1; 1 <= 10; i++)
printf ("*");
}
void print all rows(void)

for (1 = 1; 1 <= 10; i++) {
print one row () ;
printf ("\n");

}
* Instead of printing 10 rows, print all rows prints only one.
C PROGRANMMING 17

A Modern Approach stcono eoimion

Program: Guessing a Number

 The guess. c program generates a random number
between 1 and 100, which the user attempts to guess
in as few tries as possible:

Guess the secret number between 1 and 100.

A new number has been chosen.
Enter guess: 55

Too low; try again.

Enter guess: 65

Too high; try again.

Enter guess: 60

Too high; try again.

Enter guess: 58

You won 1in 4 guesses!

C PROGRANMMING 18

A Modern Approach secono eoirion

Program: Guessing a Number

Play again? (Y/N) y

A new number has been chosen.
Enter guess: 78
Too high; try again.
Enter guess: 34
You won in 2 guesses!
Play again? (Y/N) n
» Tasks to be carried out by the program:
— Initialize the random number generator
— Choose a secret number

— Interact with the user until the correct number 1s picked

« Each task can be handled by a separate function.

C PROGRANMMING 19

A Modern Approach secono eoirion

guess.cC

/* Asks user to guess a hidden number */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MAX NUMBER 100

/* external variable */
int secret number;

/* prototypes */
void initialize number generator (void);
void choose new secret number (void);

volid read guesses (void);

C PROGRANMMING 20

A Modern Approach secono eoirion

int main (void)

{

char command;
printf ("Guess the secret number between 1 and %d.\n\n",
MAX NUMBER) ;
initialize number generator();
do {
choose new secret number () ;
printf ("A new number has been chosen.\n");
read guesses();

printf ("Play again? (Y/N) ");
scanf (" %c¢", &command) ;
printf ("\n");
} while (command == 'y' || command == 'Y"');

return 0;

C PROGRANMMING 21

A Modern Approach secono eoirion

/**

* initialize number generator: Initializes the random *
* number generator using x
* the time of day. *

IR A R A b g b A b S b S b d b S b S b S b S b S b S b i b S b S b S b S b S b b b b S b G b I b i b d b G b i S ¥
*/
void initialize number generator (void)

{
srand ((unsigned) time (NULL));

/**

* choose new secret number: Randomly selects a number *
* between 1 and MAX NUMBER and *
* stores it in secret number. *

Rl i A i A i b i b i i i i i i i i i i I i i i i i i e i i e i b e e i e i b i e i i i i i e i i
*/

volid choose new secret number (void)

{
CPROGRRMMING" ' © M5 VPR, T

} A Modern Approach secono eoirion

/*********~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k*******************************
* read guesses: Repeatedly reads user guesses and tells *
* the user whether each guess is too low, *
* too high, or correct. When the guess is *
x correct, prints the total number of x
* guesses and returns. x

IR IR A b b b i b b b b b A b b b b i b b b b b b A b b i i b b i b b b A b b b A b b b A b b b i b b g i b b ¢
*/
void read guesses (void)

{

int guess, num guesses = 0;

for (;7;) |

num guesses++;

printf ("Enter guess: ");

scanf ("%5d", &guess);

1f (guess == secret number) {
printf ("You won in %d guesses!\n\n", num guesses);
return;

} else 1f (guess < secret number)
printf ("Too low; try again.\n");

else
printf ("Too high; try again.\n");

} t PROGRANMMING 23

A Modern Approach secono eoirion

Program: Guessing a Number

* Although guess. c works fine, it relies on the
external variable secret number.

* By altering choose new secret number
and read guesses slightly, we can move
secret number into the main function.

* The new version of guess. c follows, with
changes 1n bold.

C PROGRAMMING 24

A Modern Approach secono eoirion

guess2.c

/* Asks user to guess a hidden number */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MAX NUMBER 100

/* prototypes */

void 1nitialize number generator (void);
int new_secret number (void) ;

void read guesses (int secret number) ;

C PROGRANMMING 25

A Modern Approach stcono eoimion

int main (void)
{
char command;
int secret number;

printf ("Guess the secret number between 1 and %d.\n\n",
MAX NUMBER) ;
initialize number generator();
do {
secret number = new_secret number();
printf ("A new number has been chosen.\n");
read guesses (secret number) ;

printf ("Play again? (Y/N) ");
scanf (" %c¢", &command) ;
printf ("\n");
} while (command == 'y' || command == 'Y"');

return 0;

C PROGRANMMING 26

A Modern Approach stcono eoimion

/**

* initialize number generator: Initializes the random *
* number generator using x
* the time of day. *

IR A R A b g b A b S b S b d b S b S b S b S b S b S b i b S b S b S b S b S b b b b S b G b I b i b d b G b i S ¥
*/
void initialize number generator (void)

{
srand ((unsigned) time (NULL));

/**

* new_secret number: Returns a randomly chosen number *

* between 1 and MAX NUMBER. *

b i b i b b b b b b b b b i b b b b i b b b i i b b b i b b b i i b b b b i i b i i i b b i i i b b i i i i i i g
*/
int new_secret_number(void)

{
return rand() $ MAX NUMBER + 1;

' C PROGRAMMING 27

A Modern Approach stcono eoimion

/***********~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k****************************
* read guesses: Repeatedly reads user guesses and tells *
* the user whether each guess is too low, *
* too high, or correct. When the guess is *
x correct, prints the total number of x
* guesses and returns. x

IR IR A b b b i b b b b b A b b b b i b b b b b b A b b i i b b i b b b A b b b A b b b A b b b i b b g i b b ¢
*/
void read guesses (int secret number)

{

int guess, num guesses = 0;

for (;7;) |

num guesses++;

printf ("Enter guess: ");

scanf ("%5d", &guess);

1f (guess == secret number) {
printf ("You won in %d guesses!\n\n", num guesses);
return;

} else 1f (guess < secret number)
printf ("Too low; try again.\n");

else
printf ("Too high; try again.\n");

} t PROGRANMMING 28

A Modern Approach stcono eoimion

Blocks

* In Section 5.2, we encountered compound
statements of the form

{ statements }

e C allows compound statements to contain
declarations as well as statements:

{ declarations statements }

* This kind of compound statement is called a
block.

C PROGRANMMING 29

A Modern Approach stcono eoimion

Blocks

« Example of a block:
it (1 > 3) A
/* swap values of 1 and j */
int temp = 1;
1 = 75
] = temp;

C PROGRANMMING 30

A Modern Approach stcono eoimion

Blocks

* By default, the storage duration of a variable
declared 1n a block 1s automatic: storage for the
variable 1s allocated when the block is entered and
deallocated when the block 1s exited.

o The variable has block scope; it can’ t be
referenced outside the block.

* A variable that belongs to a block can be declared
static to give 1t static storage duration.

C PROGRANMMING 31

A Modern Approach stcono eoimion

Blocks

The body of a function 1s a block.

Blocks are also useful inside a function body when
we need variables for temporary use.

Advantages of declaring temporary variables 1n
blocks:

— Avoids cluttering declarations at the beginning of the
function body with variables that are used only briefly.

— Reduces name conflicts.

C99 allows variables to be declared anywhere
within a block.

C PROGRANMMING 32

A Modern Approach stcono eoimion

Scope

In a C program, the same 1dentifier may have several
different meanings.

C’ s scope rules enable the programmer (and the
compiler) to determine which meaning is relevant at a
given point in the program.

The most important scope rule: When a declaration
inside a block names an identifier that’ s already
visible, the new declaration temporarily “hides” the
old one, and the identifier takes on a new meaning.

At the end of the block, the identifier regains its old
meaning.

C PROGRANMMING 33

A Modern Approach stcono eoimion

Scope

 In the example on the next slide, the identifier i
has four different meanings:

— In Declaration 1, i is a variable with static storage
duration and file scope.

— In Declaration 2, i is a parameter with block scope.

— In Declaration 3, i 1s an automatic variable with block
scope.

— In Declaration 4, 1 1s also automatic and has block
SCOPC.
 C’ s scope rules allow us to determine the meaning
of i each time it’ s used (indicated by arrows).

C PROGRANMMING 34

A Modern Approach stcono eoimion

Chapter 10: Program Organization

: /* Declaration 1 */

void f (int) /* Declaration 2 */
{

1 = 1;
J
/* Declaration 3 */
{
/* Declaration 4 */
1 = 4;
}
void h(wvoid)
{
1 =5;
}
c PROGRAMMING 35 Copyright © 2008 W. W. Norton & Company.

A Modern App?"OCZCh SECOND EDITION All rights reserved.

Organizing a C Program

* Major elements of a C program:

— Preprocessing directives such as #include and
#define

— Type definitions

— Declarations of external variables
— Function prototypes

— Function definitions

C PROGRANMMING 36

A Modern Approach secono eoirion

Organizing a C Program

* C mmposes only a few rules on the order of these
items:

— A preprocessing directive doesn’ t take effect until the
line on which it appears.

— A type name can’ t be used until it” s been defined.

— A variable can’ t be used until it’ s declared.

e It' s a good idea to define or declare every
function prior to its first call.
— C99 makes this a requirement.

C PROGRANMMING 37

A Modern Approach stcono eoimion

Organizing a C Program

* There are several ways to organize a program so
that these rules are obeyed.

* One possible ordering:
— #include directives
— #define directives
— Type definitions
— Declarations of external variables
— Prototypes for functions other than main
— Definition of main
— Definitions of other functions

C PROGRANMMING 38

A Modern Approach stcono eoimion

Organizing a C Program

It’ s a good idea to have a boxed comment
preceding each function definition.

Information to include in the comment:
— Name of the function

— Purpose of the function

— Meaning of each parameter

— Description of return value (if any)

— Description of side effects (such as modifying external
variables)

C PROGRANMMING 39

A Modern Approach stcono eoimion

Program: Classifying a Poker Hand

The poker. c program will classify a poker hand.
Each card in the hand has a suit and a rank.

— Suits: clubs, diamonds, hearts, spades
— Ranks: two, three, four, five, six, seven, eight, nine, ten,
jack, queen, king, ace

Jokers are not allowed, and aces are high.

After reading a hand of five cards, the program will

classify the hand using the categories on the next
shide.

If a hand falls 1nto two or more categories, the
program will choose the best one.

C PROGRANMMING 40

A Modern Approach stcono eoimion

Program: Classifying a Poker Hand

» (Categories (listed from best to worst):
— straight flush (both a straight and a flush)
— four-of-a-kind (four cards of the same rank)
— full house (a three-of-a-kind and a pair)
— flush (five cards of the same suit)
— straight (five cards with consecutive ranks)
— three-of-a-kind (three cards of the same rank)
— two pairs
— pair (two cards of the same rank)
— high card (any other hand)

C PROGRANMMING 41

A Modern Approach secono eoirion

Program: Classifying a Poker Hand

* For input purposes, ranks and suits will be single
letters (upper- or lower-case):

Ranks: 2 34 5 6 78 9t j gk a
Suits: ¢ d h s
« Actions to be taken if the user enters an 1llegal card or
tries to enter the same card twice:
— Ignore the card
— Issue an error message

— Request another card

» Entering the number 0 instead of a card will cause the
program to terminate.

C PROGRAMMING 42

A Modern Approach secono eoirion

Program: Classifying a Poker Hand

* A sample session with the program:

Enter a card: Zs

Enter a card: 5s
Enter a card: 4s
Enter a card: 3s
Enter a card: 6s

Straight flush

C PROGRANMMING 43

A Modern Approach stcono eoimion

Program: Classifying a Poker Hand

Enter a card: 8
Enter a card:
Enter a card:
Duplicate card; 1gnored.
Enter a card:
Enter a card:
Enter a card:
Pair

@)

515 |

[12, 5
D 1Q. 1O

C PROGRAMMING 44

A Modern Approach stcono eoimion

Program: Classifying a Poker Hand

Enter a card: 6s
Enter a card: d2
Bad card; ignored.
Enter a card: 2d
Enter a card: 9c

Enter a card: 4h
Enter a card: ts
High card

Enter a card: 0O

C PROGRANMMING 45

A Modern Approach stcono eoimion

Program: Classifying a Poker Hand

* The program has three tasks:
— Read a hand of five cards
— Analyze the hand for pairs, straights, and so forth
— Print the classification of the hand

* The functions read cards, analyze hand,
and print result will perform these tasks.

* main does nothing but call these functions inside
an endless loop.

C PROGRAMMING 46

A Modern Approach secono eoirion

Program: Classifying a Poker Hand

* The functions will need to share a fairly large
amount of information, so we’ 1l have them
communicate through external variables.

 read cards will store information about the
hand into several external variables.

* analyze hand will then examine these
variables, storing its findings into other external
variables for the benefitof print result.

C PROGRANMMING 47

A Modern Approach stcono eoimion

Program: Classifying a Poker Hand

* Program outline:

/* #include directives go here */

/* #define directives go here */

/* declarations of external variables go here */

/* prototypes */

void read cards(void);
void analyze hand(void);
void print result(void);

C PROGRANMMING 48

A Modern App?”OCLC/Z SECOND EDITION

Program: Classifying a Poker Hand

/********~k~k7‘<********7‘<7‘<*************************************

* main: Calls read cards, analyze hand, and print result *

* repeatedly. *
R A b A b b b b b b b b I b b b i i b i b i i I b b b i I i i i b i b i i i i i b b i b b i b b b i b i b i i i 4
*/

int main (void)
{
for (;7;) |
read cards();
analyze hand/()
print result ()

Ne o

}

/**
Reads the cards into external variables; *

checks for bad cards and duplicate cards. *

* read cards:
*

R iR d d d b b i i A g i A A i i i i A A i i i i i il i i i i i i i i i i i i i il il i i i i i i i i i i i i i i i i ¢

*/

volid read cards (void)

{ C PROGRAMMING 49

\ * A/WO(IZ@V/HA[)])‘VOCLC}Z SECOND EDITION

Program: Classifying a Poker Hand

/********~k~k7‘<********7‘<7‘<*************************************

* analyze hand: Determines whether the hand contains a x
* straight, a flush, four-of-a-kind, x
* and/or three-of-a-kind; determines the x
* number of pairs; stores the results into *
* external variables. x
**/

void analyze hand(void)

{
}

/**

* print result: Notifies the user of the result, using *
* the external variables set by x
* analyze hand. *

**/
void print result (void)

{
}

C PROGRANMMING 50

A Modern App‘VOCLC}Z SECOND EDITION

Program: Classifying a Poker Hand

How should we represent the hand of cards?

analyze hand will need to know how many cards
are 1n each rank and each suit.

This suggests that we use two arrays, num in rank
and num in suit.
— num in rank[r] will be the number of cards with rank r.

— num in suit[s] will be the number of cards with suit s.

We' 1l encode ranks as numbers between 0 and 12.

Suits will be numbers between 0 and 3.

C PROGRANMMING 51

A Modern Approach secono eoirion

Program: Classifying a Poker Hand

« We' 1l also need a third array, card exists, so
that read cards can detect duplicate cards.

* Each time read cards reads a card with rank r
and suit s, 1t checks whether the value of
card exists[r] [s] 1s true.
— If so, the card was previously entered.

— Ifnot, read cards assigns true to card exists

[r] [s].

C PROGRANMMING 52

A Modern Approach secono eoirion

Program: Classifying a Poker Hand

* Both the read cards function and the
analyze hand function will need access to the
num in rankandnum in suit arrays, so
they will be external variables.

 The card exists array 1s used only by
read cards, so it can be local to that function.

* As arule, variables should be made external only
if necessary.

C PROGRANMMING 53

A Modern Approach secono eoirion

poker.c

/* Classifies a poker hand */

#include <stdbool.h> /* C99 only */
#include <stdio.h>
#include <stdlib.h>

#define NUM_RANKS 13
#define NUM SUITS 4
#define NUM CARDS 5

/* external variables */

int num in rank[NUM RANKS];

int num in sult[NUM SUITS];

bool straight, flush, four, three;
int pairs; /* can be 0, 1, or 2 */

C PROGRANMMING 54

A Modern Approach secono eoirion

/* prototypes */

void read cards(void);
void analyze hand(void)
void print result (void)

~e

~e

/**

analyze hand, and print result *

* main: Calls read cards,
*

* repeatedly.

Rl i i A A i i i b i i i i b i i i i i i e i e i i i i i i i i i i i i i i i i ¢

*/
int main (void)
{
for (;7) |
read cards () ;
analyze hand()
print result ()

~e

e

C PROGRANMMING 55

A Modern Approach secono eoirion

/**

* read cards: Reads the cards into the external *
* variables num in rank and num in suilt; x
o checks for bad cards and duplicate cards. *

P b b b b b b b b b b b i b i b i b b ¢
*/
void read_cards(void)

{ bool card exists[NUM RANKS] [NUM SUITS];
char ch, rank ch, suilt ch;
int rank, suit;
bool bad card;
int cards read = 0;

for (rank =

0; rank < NUM RANKS; rank++) {
num in rank]|

rank] = 0;
for (suit = 0; suilt < NUM SUITS; suit++)
card exists[rank] [sult] = false;

}

for (suit = 0; suit < NUM SUITS; suit++)
CPROGRANMIMING - 0/ s

A Modern Approach secono eoirion

while (cards read < NUM CARDS) ({
bad card = false;

printf ("Enter a card: ");

rank ch = getchar();

switch (rank ch) {
case '0': exit (EXIT SUCCESS) ;
case '2': rank = 0; break;
case '3': rank = 1; break;
case '4': rank = 2; break;
case 'LH': rank = 3; break;
case 'o': rank = 4; Dbreak;
case '7"': rank = 5; break;
case '8': rank = 6; break;
case '9': rank = 7; break;
case 't': case 'T': rank = 8; break;
case 'J': case 'J': rank = 9; break;
case 'g': case 'Q': rank = 10; break;
case 'k': case 'K': rank = 11; break;
case 'a': case 'A': rank = 12; break;
default: bad card = true;

)
C PROGRANMMING 57

A Modern Approach secono eoirion

sult ch = getchar();
switch (suit ch) {

case 'c': case 'C': suit = 0; break;

case 'd': case 'D': suit = 1; break;

case 'h': case 'H': suilt = 2; break;

case 's': case 'S': suit = 3; break;
\ default: bad card = true;
while ((ch = getchar()) != '"\n"'")

if (ch != " ') bad card = true;

if (bad card)
printf ("Bad card; ignored.\n");
else 1f (card exists[rank] [sult])
printf ("Duplicate card; ignored.\n");
else {
num in rank[rank]++;
num in sult[sulit]++;
card exists[rank] [suit] = true;
cards read++;

C PROGRANMMING 58

A Modern Approach secono eoirion

/**

* analyze hand: Determines whether the hand contains a
straight, a flush, four-of-a-kind,
and/or three-of-a-kind; determines the
number of pairs; stores the results 1nto
the external variables straight, flush,
four, three, and pairs.

b . s
% % X% X %

PR A A i i i b b b i i i b b A i i i i i g i i i b b i g i i b b i i i i i i g g i i A i g i i b i i i i i b S i g
*/
void analyze hand(void)
{
int num consec = 0;
int rank, suit;
straight = false;
flush = false;

four = false;
three = false;
pairs = 0;

C PROGRANMMING 59

A Modern Approach secono eoirion

/* check for flush */
for (suit = 0; suit < NUM SUITS; suit++)
if (num in sult[suit] == NUM CARDS)
flush = true;

/* check for straight */

rank = 0;

while (num in rank[rank] == 0) rank++;

for (; rank < NUM RANKS && num in rank[rank] > 0; rank++)
num consec++;

if (num consec == NUM CARDS) {
straight = true;
return;

}

/* check for 4-of-a-kind, 3-of-a-kind, and pairs */
for (rank = 0; rank < NUM RANKS; rank++) ({

i1f (num in rank[rank] == 4) four = true;
if (num in rank[rank] == 3) three = true;
if (num in rank[rank] == 2) pairs++;

C PROGRANMMING 60

A Modern Approach secono eoirion

/**

*

*
*
*

void print result (void)

{

print result:

Prints the classification of the hand, x

based on the values of the external *
variables straight, flush, four, three, *
and pairs. *

R d i i A b i A A g b A A i i A A A A i g i i i A i i A i S i di i A i A i i il i i i i i i i i i i i i i i i i b ¢

*/

1f (straight && flush)

else 1f (four)
else 1f (three &&
palirs == 1)

else 1f (flush)
else 1f (straight)
else 1f (three)
else 1f (pairs == 2)
else 1if (pairs == 1)
else

intf ("\n\n"

. € PROGRAMMING

A Modern Approach stcono eoimion

printf ("Straight flush");
printf ("Four of a kind");

printf ("Full house");
printf ("Flush");

printf ("Straight");

printf ("Three of a kind");
printf ("Two pairs");
printf ("Pair");

printf ("High card");

61

