
Chapter 10: Program Organization

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 10

Program Organization

Chapter 10: Program Organization

Local Variables
•  A variable declared in the body of a function is

said to be local to the function:
 int sum_digits(int n)
 {
 int sum = 0; /* local variable */

 while (n > 0) {
 sum += n % 10;
 n /= 10;
 }

 return sum;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 10: Program Organization

Local Variables
•  Default properties of local variables:

–  Automatic storage duration. Storage is
“automatically” allocated when the enclosing function
is called and deallocated when the function returns.

–  Block scope. A local variable is visible from its point of
declaration to the end of the enclosing function body.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 10: Program Organization

Local Variables
•  Since C99 doesn’t require variable declarations to

come at the beginning of a function, it’s possible
for a local variable to have a very small scope:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 10: Program Organization

Static Local Variables
•  Including static in the declaration of a local variable

causes it to have static storage duration.
•  A variable with static storage duration has a permanent

storage location, so it retains its value throughout the
execution of the program.

•  Example:
 void f(void)
 {
 static int i; /* static local variable */
 …
 }

•  A static local variable still has block scope, so it’s not
visible to other functions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 10: Program Organization

Parameters
•  Parameters have the same properties—automatic

storage duration and block scope—as local
variables.

•  Each parameter is initialized automatically when a
function is called (by being assigned the value of
the corresponding argument).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 10: Program Organization

External Variables
•  Passing arguments is one way to transmit

information to a function.
•  Functions can also communicate through external

variables—variables that are declared outside the
body of any function.

•  External variables are sometimes known as global
variables.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 10: Program Organization

External Variables
•  Properties of external variables:

–  Static storage duration
–  File scope

•  Having file scope means that an external variable
is visible from its point of declaration to the end of
the enclosing file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 10: Program Organization

Example: Using External Variables
to Implement a Stack

•  To illustrate how external variables might be used,
let’s look at a data structure known as a stack.

•  A stack, like an array, can store multiple data
items of the same type.

•  The operations on a stack are limited:
–  Push an item (add it to one end—the “stack top”)
–  Pop an item (remove it from the same end)

•  Examining or modifying an item that’s not at the
top of the stack is forbidden.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 10: Program Organization

Example: Using External Variables
to Implement a Stack

•  One way to implement a stack in C is to store its
items in an array, which we’ll call contents.

•  A separate integer variable named top marks the
position of the stack top.
–  When the stack is empty, top has the value 0.

•  To push an item: Store it in contents at the
position indicated by top, then increment top.

•  To pop an item: Decrement top, then use it as an
index into contents to fetch the item that’s
being popped.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 10: Program Organization

Example: Using External Variables
to Implement a Stack

•  The following program fragment declares the
contents and top variables for a stack.

•  It also provides a set of functions that represent
stack operations.

•  All five functions need access to the top variable,
and two functions need access to contents, so
contents and top will be external.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 10: Program Organization

Example: Using External Variables
to Implement a Stack

 #include <stdbool.h> /* C99 only */

 #define STACK_SIZE 100

 /* external variables */
 int contents[STACK_SIZE];
 int top = 0;

 void make_empty(void)
 {
 top = 0;
 }

 bool is_empty(void)
 {
 return top == 0;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 10: Program Organization

Example: Using External Variables
to Implement a Stack

 bool is_full(void)
 {
 return top == STACK_SIZE;
 }

 void push(int i)
 {
 if (is_full()
 stack_overflow();
 else
 contents[top++] = i;
 }

 int pop(void)
 {
 if (is_empty())
 stack_underflow();
 else
 return contents[--top];
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 10: Program Organization

Pros and Cons of External Variables
•  External variables are convenient when many functions

must share a variable or when a few functions share a
large number of variables.

•  In most cases, it’s better for functions to communicate
through parameters rather than by sharing variables:
–  If we change an external variable during program maintenance

(by altering its type, say), we’ll need to check every function in
the same file to see how the change affects it.

–  If an external variable is assigned an incorrect value, it may be
difficult to identify the guilty function.

–  Functions that rely on external variables are hard to reuse in
other programs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 10: Program Organization

Pros and Cons of External Variables
•  Don’t use the same external variable for different

purposes in different functions.
•  Suppose that several functions need a variable

named i to control a for statement.
•  Instead of declaring i in each function that uses it,

some programmers declare it just once at the top
of the program.

•  This practice is misleading; someone reading the
program later may think that the uses of i are
related, when in fact they’re not.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 10: Program Organization

Pros and Cons of External Variables
•  Make sure that external variables have meaningful

names.
•  Local variables don’t always need meaningful

names: it’s often hard to think of a better name
than i for the control variable in a for loop.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 10: Program Organization

Pros and Cons of External Variables
•  Making variables external when they should be local can lead to

some rather frustrating bugs.
•  Code that is supposed to display a 10 × 10 arrangement of asterisks:
 int i;

 void print_one_row(void)
 {
 for (i = 1; i <= 10; i++)
 printf("*");
 }

 void print_all_rows(void)
 {
 for (i = 1; i <= 10; i++) {
 print_one_row();
 printf("\n");
 }
 }

•  Instead of printing 10 rows, print_all_rows prints only one.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 10: Program Organization

Program: Guessing a Number
•  The guess.c program generates a random number

between 1 and 100, which the user attempts to guess
in as few tries as possible:

 Guess the secret number between 1 and 100.

 A new number has been chosen.
 Enter guess: 55
 Too low; try again.
 Enter guess: 65
 Too high; try again.
 Enter guess: 60
 Too high; try again.
 Enter guess: 58
 You won in 4 guesses!

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 10: Program Organization

Program: Guessing a Number
 Play again? (Y/N) y

 A new number has been chosen.
 Enter guess: 78
 Too high; try again.
 Enter guess: 34
 You won in 2 guesses!

 Play again? (Y/N) n

•  Tasks to be carried out by the program:
–  Initialize the random number generator
–  Choose a secret number
–  Interact with the user until the correct number is picked

•  Each task can be handled by a separate function.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 10: Program Organization

guess.c

/* Asks user to guess a hidden number */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MAX_NUMBER 100

/* external variable */
int secret_number;

/* prototypes */
void initialize_number_generator(void);
void choose_new_secret_number(void);
void read_guesses(void);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 10: Program Organization

int main(void)
{
 char command;
 printf("Guess the secret number between 1 and %d.\n\n",
 MAX_NUMBER);
 initialize_number_generator();
 do {
 choose_new_secret_number();
 printf("A new number has been chosen.\n");
 read_guesses();
 printf("Play again? (Y/N) ");
 scanf(" %c", &command);
 printf("\n");
 } while (command == 'y' || command == 'Y');

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 10: Program Organization

/**
 * initialize_number_generator: Initializes the random *
 * number generator using *
 * the time of day. *

*/

void initialize_number_generator(void)
{
 srand((unsigned) time(NULL));
}

/**
 * choose_new_secret_number: Randomly selects a number *
 * between 1 and MAX_NUMBER and *
 * stores it in secret_number. *

*/

void choose_new_secret_number(void)
{
 secret_number = rand() % MAX_NUMBER + 1;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 10: Program Organization

/**
 * read_guesses: Repeatedly reads user guesses and tells *
 * the user whether each guess is too low, *
 * too high, or correct. When the guess is *
 * correct, prints the total number of *
 * guesses and returns. *

*/

void read_guesses(void)
{
 int guess, num_guesses = 0;

 for (;;) {
 num_guesses++;
 printf("Enter guess: ");
 scanf("%d", &guess);
 if (guess == secret_number) {
 printf("You won in %d guesses!\n\n", num_guesses);
 return;
 } else if (guess < secret_number)
 printf("Too low; try again.\n");
 else
 printf("Too high; try again.\n");
 }
} Copyright © 2008 W. W. Norton & Company.

All rights reserved.
23

Chapter 10: Program Organization

Program: Guessing a Number
•  Although guess.c works fine, it relies on the

external variable secret_number.
•  By altering choose_new_secret_number

and read_guesses slightly, we can move
secret_number into the main function.

•  The new version of guess.c follows, with
changes in bold.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 10: Program Organization

guess2.c

/* Asks user to guess a hidden number */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MAX_NUMBER 100

/* prototypes */
void initialize_number_generator(void);
int new_secret_number(void);
void read_guesses(int secret_number);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 10: Program Organization

int main(void)
{
 char command;
 int secret_number;

 printf("Guess the secret number between 1 and %d.\n\n",
 MAX_NUMBER);
 initialize_number_generator();
 do {
 secret_number = new_secret_number();
 printf("A new number has been chosen.\n");
 read_guesses(secret_number);
 printf("Play again? (Y/N) ");
 scanf(" %c", &command);
 printf("\n");
 } while (command == 'y' || command == 'Y');

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 10: Program Organization

/**
 * initialize_number_generator: Initializes the random *
 * number generator using *
 * the time of day. *

*/

void initialize_number_generator(void)
{
 srand((unsigned) time(NULL));
}

/**
 * new_secret_number: Returns a randomly chosen number *
 * between 1 and MAX_NUMBER. *

*/

int new_secret_number(void)
{
 return rand() % MAX_NUMBER + 1;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 10: Program Organization

/**
 * read_guesses: Repeatedly reads user guesses and tells *
 * the user whether each guess is too low, *
 * too high, or correct. When the guess is *
 * correct, prints the total number of *
 * guesses and returns. *

*/

void read_guesses(int secret_number)
{
 int guess, num_guesses = 0;

 for (;;) {
 num_guesses++;
 printf("Enter guess: ");
 scanf("%d", &guess);
 if (guess == secret_number) {
 printf("You won in %d guesses!\n\n", num_guesses);
 return;
 } else if (guess < secret_number)
 printf("Too low; try again.\n");
 else
 printf("Too high; try again.\n");
 }
} Copyright © 2008 W. W. Norton & Company.

All rights reserved.
28

Chapter 10: Program Organization

Blocks
•  In Section 5.2, we encountered compound

statements of the form
 { statements }

•  C allows compound statements to contain
declarations as well as statements:

 { declarations statements }
•  This kind of compound statement is called a

block.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 10: Program Organization

Blocks
•  Example of a block:
 if (i > j) {
 /* swap values of i and j */
 int temp = i;
 i = j;
 j = temp;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 10: Program Organization

Blocks
•  By default, the storage duration of a variable

declared in a block is automatic: storage for the
variable is allocated when the block is entered and
deallocated when the block is exited.

•  The variable has block scope; it can’t be
referenced outside the block.

•  A variable that belongs to a block can be declared
static to give it static storage duration.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 10: Program Organization

Blocks
•  The body of a function is a block.
•  Blocks are also useful inside a function body when

we need variables for temporary use.
•  Advantages of declaring temporary variables in

blocks:
–  Avoids cluttering declarations at the beginning of the

function body with variables that are used only briefly.
–  Reduces name conflicts.

•  C99 allows variables to be declared anywhere
within a block.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 10: Program Organization

Scope
•  In a C program, the same identifier may have several

different meanings.
•  C’s scope rules enable the programmer (and the

compiler) to determine which meaning is relevant at a
given point in the program.

•  The most important scope rule: When a declaration
inside a block names an identifier that’s already
visible, the new declaration temporarily “hides” the
old one, and the identifier takes on a new meaning.

•  At the end of the block, the identifier regains its old
meaning.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 10: Program Organization

Scope
•  In the example on the next slide, the identifier i

has four different meanings:
–  In Declaration 1, i is a variable with static storage

duration and file scope.
–  In Declaration 2, i is a parameter with block scope.
–  In Declaration 3, i is an automatic variable with block

scope.
–  In Declaration 4, i is also automatic and has block

scope.
•  C’s scope rules allow us to determine the meaning

of i each time it’s used (indicated by arrows).
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 10: Program Organization

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 10: Program Organization

Organizing a C Program
•  Major elements of a C program:

–  Preprocessing directives such as #include and
#define

–  Type definitions
–  Declarations of external variables
–  Function prototypes
–  Function definitions

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 10: Program Organization

Organizing a C Program
•  C imposes only a few rules on the order of these

items:
–  A preprocessing directive doesn’t take effect until the

line on which it appears.
–  A type name can’t be used until it’s been defined.
–  A variable can’t be used until it’s declared.

•  It’s a good idea to define or declare every
function prior to its first call.
–  C99 makes this a requirement.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 10: Program Organization

Organizing a C Program
•  There are several ways to organize a program so

that these rules are obeyed.
•  One possible ordering:

–  #include directives
–  #define directives
–  Type definitions
–  Declarations of external variables
–  Prototypes for functions other than main
–  Definition of main
–  Definitions of other functions

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 10: Program Organization

Organizing a C Program
•  It’s a good idea to have a boxed comment

preceding each function definition.
•  Information to include in the comment:

–  Name of the function
–  Purpose of the function
–  Meaning of each parameter
–  Description of return value (if any)
–  Description of side effects (such as modifying external

variables)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 10: Program Organization

Program: Classifying a Poker Hand
•  The poker.c program will classify a poker hand.
•  Each card in the hand has a suit and a rank.

–  Suits: clubs, diamonds, hearts, spades
–  Ranks: two, three, four, five, six, seven, eight, nine, ten,

jack, queen, king, ace

•  Jokers are not allowed, and aces are high.
•  After reading a hand of five cards, the program will

classify the hand using the categories on the next
slide.

•  If a hand falls into two or more categories, the
program will choose the best one.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 10: Program Organization

Program: Classifying a Poker Hand
•  Categories (listed from best to worst):

–  straight flush (both a straight and a flush)
–  four-of-a-kind (four cards of the same rank)
–  full house (a three-of-a-kind and a pair)
–  flush (five cards of the same suit)
–  straight (five cards with consecutive ranks)
–  three-of-a-kind (three cards of the same rank)
–  two pairs
–  pair (two cards of the same rank)
–  high card (any other hand)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 10: Program Organization

Program: Classifying a Poker Hand
•  For input purposes, ranks and suits will be single

letters (upper- or lower-case):
 Ranks: 2 3 4 5 6 7 8 9 t j q k a
 Suits: c d h s

•  Actions to be taken if the user enters an illegal card or
tries to enter the same card twice:
–  Ignore the card
–  Issue an error message
–  Request another card

•  Entering the number 0 instead of a card will cause the
program to terminate.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 10: Program Organization

Program: Classifying a Poker Hand
•  A sample session with the program:
 Enter a card: 2s
 Enter a card: 5s
 Enter a card: 4s
 Enter a card: 3s
 Enter a card: 6s
 Straight flush

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 10: Program Organization

Program: Classifying a Poker Hand
 Enter a card: 8c
 Enter a card: as
 Enter a card: 8c
 Duplicate card; ignored.
 Enter a card: 7c
 Enter a card: ad
 Enter a card: 3h
 Pair

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 10: Program Organization

Program: Classifying a Poker Hand
 Enter a card: 6s
 Enter a card: d2
 Bad card; ignored.
 Enter a card: 2d
 Enter a card: 9c
 Enter a card: 4h
 Enter a card: ts
 High card

 Enter a card: 0

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 10: Program Organization

Program: Classifying a Poker Hand
•  The program has three tasks:

–  Read a hand of five cards
–  Analyze the hand for pairs, straights, and so forth
–  Print the classification of the hand

•  The functions read_cards, analyze_hand,
and print_result will perform these tasks.

•  main does nothing but call these functions inside
an endless loop.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 10: Program Organization

Program: Classifying a Poker Hand
•  The functions will need to share a fairly large

amount of information, so we’ll have them
communicate through external variables.

•  read_cards will store information about the
hand into several external variables.

•  analyze_hand will then examine these
variables, storing its findings into other external
variables for the benefit of print_result.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 10: Program Organization

Program: Classifying a Poker Hand
•  Program outline:
/* #include directives go here */

/* #define directives go here */

/* declarations of external variables go here */

/* prototypes */
void read_cards(void);
void analyze_hand(void);
void print_result(void);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 10: Program Organization

Program: Classifying a Poker Hand
/**
 * main: Calls read_cards, analyze_hand, and print_result *
 * repeatedly. *

*/

int main(void)
{
 for (;;) {
 read_cards();
 analyze_hand();
 print_result();
 }
}

/**
 * read_cards: Reads the cards into external variables; *
 * checks for bad cards and duplicate cards. *

*/

void read_cards(void)
{
 …
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 10: Program Organization

Program: Classifying a Poker Hand
/**
 * analyze_hand: Determines whether the hand contains a *
 * straight, a flush, four-of-a-kind, *
 * and/or three-of-a-kind; determines the *
 * number of pairs; stores the results into *
 * external variables. *
 **/
void analyze_hand(void)
{
 …
}

/**
 * print_result: Notifies the user of the result, using *
 * the external variables set by *
 * analyze_hand. *
 **/
void print_result(void)
{
 …
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 10: Program Organization

Program: Classifying a Poker Hand
•  How should we represent the hand of cards?
•  analyze_hand will need to know how many cards

are in each rank and each suit.
•  This suggests that we use two arrays, num_in_rank

and num_in_suit.
–  num_in_rank[r] will be the number of cards with rank r.
–  num_in_suit[s] will be the number of cards with suit s.

•  We’ll encode ranks as numbers between 0 and 12.
•  Suits will be numbers between 0 and 3.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 10: Program Organization

Program: Classifying a Poker Hand
•  We’ll also need a third array, card_exists, so

that read_cards can detect duplicate cards.
•  Each time read_cards reads a card with rank r

and suit s, it checks whether the value of
card_exists[r][s] is true.
–  If so, the card was previously entered.
–  If not, read_cards assigns true to card_exists
[r][s].

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 10: Program Organization

Program: Classifying a Poker Hand
•  Both the read_cards function and the
analyze_hand function will need access to the
num_in_rank and num_in_suit arrays, so
they will be external variables.

•  The card_exists array is used only by
read_cards, so it can be local to that function.

•  As a rule, variables should be made external only
if necessary.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 10: Program Organization

poker.c

/* Classifies a poker hand */

#include <stdbool.h> /* C99 only */
#include <stdio.h>
#include <stdlib.h>

#define NUM_RANKS 13
#define NUM_SUITS 4
#define NUM_CARDS 5

/* external variables */
int num_in_rank[NUM_RANKS];
int num_in_suit[NUM_SUITS];
bool straight, flush, four, three;
int pairs; /* can be 0, 1, or 2 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 10: Program Organization

/* prototypes */
void read_cards(void);
void analyze_hand(void);
void print_result(void);

/**
 * main: Calls read_cards, analyze_hand, and print_result *
 * repeatedly. *

*/

int main(void)
{
 for (;;) {
 read_cards();
 analyze_hand();
 print_result();
 }
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 10: Program Organization

/**
 * read_cards: Reads the cards into the external *
 * variables num_in_rank and num_in_suit; *
 * checks for bad cards and duplicate cards. *

*/

void read_cards(void)
{
 bool card_exists[NUM_RANKS][NUM_SUITS];
 char ch, rank_ch, suit_ch;
 int rank, suit;
 bool bad_card;
 int cards_read = 0;

 for (rank = 0; rank < NUM_RANKS; rank++) {
 num_in_rank[rank] = 0;
 for (suit = 0; suit < NUM_SUITS; suit++)
 card_exists[rank][suit] = false;
 }

 for (suit = 0; suit < NUM_SUITS; suit++)
 num_in_suit[suit] = 0; Copyright © 2008 W. W. Norton & Company.

All rights reserved.
56

Chapter 10: Program Organization

 while (cards_read < NUM_CARDS) {
 bad_card = false;

 printf("Enter a card: ");

 rank_ch = getchar();
 switch (rank_ch) {
 case '0': exit(EXIT_SUCCESS);
 case '2': rank = 0; break;
 case '3': rank = 1; break;
 case '4': rank = 2; break;
 case '5': rank = 3; break;
 case '6': rank = 4; break;
 case '7': rank = 5; break;
 case '8': rank = 6; break;
 case '9': rank = 7; break;
 case 't': case 'T': rank = 8; break;
 case 'j': case 'J': rank = 9; break;
 case 'q': case 'Q': rank = 10; break;
 case 'k': case 'K': rank = 11; break;
 case 'a': case 'A': rank = 12; break;
 default: bad_card = true;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 10: Program Organization

 suit_ch = getchar();
 switch (suit_ch) {
 case 'c': case 'C': suit = 0; break;
 case 'd': case 'D': suit = 1; break;
 case 'h': case 'H': suit = 2; break;
 case 's': case 'S': suit = 3; break;
 default: bad_card = true;
 }

 while ((ch = getchar()) != '\n')
 if (ch != ' ') bad_card = true;

 if (bad_card)
 printf("Bad card; ignored.\n");
 else if (card_exists[rank][suit])
 printf("Duplicate card; ignored.\n");
 else {
 num_in_rank[rank]++;
 num_in_suit[suit]++;
 card_exists[rank][suit] = true;
 cards_read++;
 }
 }
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 10: Program Organization

/**
 * analyze_hand: Determines whether the hand contains a *
 * straight, a flush, four-of-a-kind, *
 * and/or three-of-a-kind; determines the *
 * number of pairs; stores the results into *
 * the external variables straight, flush, *
 * four, three, and pairs. *

*/

void analyze_hand(void)
{
 int num_consec = 0;
 int rank, suit;
 straight = false;
 flush = false;
 four = false;
 three = false;
 pairs = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 10: Program Organization

 /* check for flush */
 for (suit = 0; suit < NUM_SUITS; suit++)
 if (num_in_suit[suit] == NUM_CARDS)
 flush = true;

 /* check for straight */
 rank = 0;
 while (num_in_rank[rank] == 0) rank++;
 for (; rank < NUM_RANKS && num_in_rank[rank] > 0; rank++)
 num_consec++;
 if (num_consec == NUM_CARDS) {
 straight = true;
 return;
 }

 /* check for 4-of-a-kind, 3-of-a-kind, and pairs */
 for (rank = 0; rank < NUM_RANKS; rank++) {
 if (num_in_rank[rank] == 4) four = true;
 if (num_in_rank[rank] == 3) three = true;
 if (num_in_rank[rank] == 2) pairs++;
 }
}
 Copyright © 2008 W. W. Norton & Company.

All rights reserved.
60

Chapter 10: Program Organization

/**
 * print_result: Prints the classification of the hand, *
 * based on the values of the external *
 * variables straight, flush, four, three, *
 * and pairs. *

*/

void print_result(void)
{
 if (straight && flush) printf("Straight flush");
 else if (four) printf("Four of a kind");
 else if (three &&
 pairs == 1) printf("Full house");
 else if (flush) printf("Flush");
 else if (straight) printf("Straight");
 else if (three) printf("Three of a kind");
 else if (pairs == 2) printf("Two pairs");
 else if (pairs == 1) printf("Pair");
 else printf("High card");

 printf("\n\n");
} Copyright © 2008 W. W. Norton & Company.

All rights reserved.
61

