
Chapter 13: Strings

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 13

Strings

Chapter 13: Strings

Introduction
•  This chapter covers both string constants (or

literals, as they’re called in the C standard) and
string variables.

•  Strings are arrays of characters in which a special
character—the null character—marks the end.

•  The C library provides a collection of functions
for working with strings.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 13: Strings

String Literals
•  A string literal is a sequence of characters enclosed within double

quotes:
 "When you come to a fork in the road, take it."

•  String literals may contain escape sequences.
•  Character escapes often appear in printf and scanf format

strings.
•  For example, each \n character in the string
 "Candy\nIs dandy\nBut liquor\nIs quicker.\n --Ogden Nash\n"

 causes the cursor to advance to the next line:
 Candy
 Is dandy
 But liquor
 Is quicker.
 --Ogden Nash

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 13: Strings

Continuing a String Literal
•  The backslash character (\) can be used to

continue a string literal from one line to the next:
 printf("When you come to a fork in the road, take it. \
 --Yogi Berra");

•  In general, the \ character can be used to join two
or more lines of a program into a single line.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 13: Strings

Continuing a String Literal
•  There’s a better way to deal with long string

literals.
•  When two or more string literals are adjacent, the

compiler will join them into a single string.
•  This rule allows us to split a string literal over two

or more lines:
 printf("When you come to a fork in the road, take it. "
 "--Yogi Berra");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 13: Strings

How String Literals Are Stored
•  When a C compiler encounters a string literal of

length n in a program, it sets aside n + 1 bytes of
memory for the string.

•  This memory will contain the characters in the
string, plus one extra character—the null
character—to mark the end of the string.

•  The null character is a byte whose bits are all zero,
so it’s represented by the \0 escape sequence.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 13: Strings

How String Literals Are Stored
•  The string literal "abc" is stored as an array of

four characters:

•  The string "" is stored as a single null character:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 13: Strings

How String Literals Are Stored
•  Since a string literal is stored as an array, the

compiler treats it as a pointer of type char *.
•  Both printf and scanf expect a value of type
char * as their first argument.

•  The following call of printf passes the address
of "abc" (a pointer to where the letter a is stored
in memory):

 printf("abc");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 13: Strings

Operations on String Literals
•  We can use a string literal wherever C allows a
char * pointer:

 char *p;

 p = "abc";

•  This assignment makes p point to the first
character of the string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 13: Strings

Operations on String Literals
•  String literals can be subscripted:
 char ch;

 ch = "abc"[1];

 The new value of ch will be the letter b.
•  A function that converts a number between 0 and

15 into the equivalent hex digit:
 char digit_to_hex_char(int digit)
 {
 return "0123456789ABCDEF"[digit];
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 13: Strings

Operations on String Literals
•  Attempting to modify a string literal causes

undefined behavior:
 char *p = "abc";

 *p = 'd'; /*** WRONG ***/

•  A program that tries to change a string literal may
crash or behave erratically.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 13: Strings

String Literals versus Character Constants
•  A string literal containing a single character isn’t

the same as a character constant.
–  "a" is represented by a pointer.
–  'a' is represented by an integer.

•  A legal call of printf:
 printf("\n");

•  An illegal call:
 printf('\n'); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 13: Strings

String Variables
•  Any one-dimensional array of characters can be

used to store a string.
•  A string must be terminated by a null character.
•  Difficulties with this approach:

–  It can be hard to tell whether an array of characters is
being used as a string.

–  String-handling functions must be careful to deal
properly with the null character.

–  Finding the length of a string requires searching for the
null character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 13: Strings

String Variables
•  If a string variable needs to hold 80 characters, it

must be declared to have length 81:
 #define STR_LEN 80
 …
 char str[STR_LEN+1];

•  Adding 1 to the desired length allows room for the
null character at the end of the string.

•  Defining a macro that represents 80 and then
adding 1 separately is a common practice.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 13: Strings

String Variables
•  Be sure to leave room for the null character when

declaring a string variable.
•  Failing to do so may cause unpredictable results

when the program is executed.
•  The actual length of a string depends on the

position of the terminating null character.
•  An array of STR_LEN + 1 characters can hold

strings with lengths between 0 and STR_LEN.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 13: Strings

Initializing a String Variable
•  A string variable can be initialized at the same

time it’s declared:
 char date1[8] = "June 14";

•  The compiler will automatically add a null
character so that date1 can be used as a string:

•  "June 14" is not a string literal in this context.
•  Instead, C views it as an abbreviation for an array

initializer.
 Copyright © 2008 W. W. Norton & Company.

All rights reserved.
16

Chapter 13: Strings

Initializing a String Variable
•  If the initializer is too short to fill the string

variable, the compiler adds extra null characters:
 char date2[9] = "June 14";
 Appearance of date2:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 13: Strings

Initializing a String Variable
•  An initializer for a string variable can’t be longer

than the variable, but it can be the same length:
 char date3[7] = "June 14";

•  There’s no room for the null character, so the
compiler makes no attempt to store one:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 13: Strings

Initializing a String Variable
•  The declaration of a string variable may omit its

length, in which case the compiler computes it:
 char date4[] = "June 14";

•  The compiler sets aside eight characters for
date4, enough to store the characters in "June
14" plus a null character.

•  Omitting the length of a string variable is
especially useful if the initializer is long, since
computing the length by hand is error-prone.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 13: Strings

Character Arrays versus Character Pointers
•  The declaration
 char date[] = "June 14";

 declares date to be an array,
•  The similar-looking
 char *date = "June 14";

 declares date to be a pointer.
•  Thanks to the close relationship between arrays

and pointers, either version can be used as a string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 13: Strings

Character Arrays versus Character Pointers
•  However, there are significant differences between

the two versions of date.
–  In the array version, the characters stored in date can

be modified. In the pointer version, date points to a
string literal that shouldn’t be modified.

–  In the array version, date is an array name. In the
pointer version, date is a variable that can point to
other strings.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 13: Strings

Character Arrays versus Character Pointers
•  The declaration
 char *p;

 does not allocate space for a string.
•  Before we can use p as a string, it must point to an

array of characters.
•  One possibility is to make p point to a string variable:
 char str[STR_LEN+1], *p;

 p = str;

•  Another possibility is to make p point to a
dynamically allocated string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 13: Strings

Character Arrays versus Character Pointers
•  Using an uninitialized pointer variable as a string

is a serious error.
•  An attempt at building the string "abc":
 char *p;

 p[0] = 'a'; /*** WRONG ***/
 p[1] = 'b'; /*** WRONG ***/
 p[2] = 'c'; /*** WRONG ***/
 p[3] = '\0'; /*** WRONG ***/

•  Since p hasn’t been initialized, this causes
undefined behavior.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 13: Strings

Reading and Writing Strings
•  Writing a string is easy using either printf or
puts.

•  Reading a string is a bit harder, because the input
may be longer than the string variable into which
it’s being stored.

•  To read a string in a single step, we can use either
scanf or gets.

•  As an alternative, we can read strings one
character at a time.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 13: Strings

Writing Strings Using printf and puts
•  The %s conversion specification allows printf

to write a string:
 char str[] = "Are we having fun yet?";

 printf("%s\n", str);

 The output will be
 Are we having fun yet?

•  printf writes the characters in a string one by
one until it encounters a null character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 13: Strings

Writing Strings Using printf and puts
•  To print part of a string, use the conversion

specification %.ps.
•  p is the number of characters to be displayed.
•  The statement
 printf("%.6s\n", str);

 will print
 Are we

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 13: Strings

Writing Strings Using printf and puts
•  The %ms conversion will display a string in a field

of size m.
•  If the string has fewer than m characters, it will be

right-justified within the field.
•  To force left justification instead, we can put a

minus sign in front of m.
•  The m and p values can be used in combination.
•  A conversion specification of the form %m.ps

causes the first p characters of a string to be
displayed in a field of size m.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 13: Strings

Writing Strings Using printf and puts
•  printf isn’t the only function that can write

strings.
•  The C library also provides puts:
 puts(str);

•  After writing a string, puts always writes an
additional new-line character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 13: Strings

Reading Strings Using scanf and gets
•  The %s conversion specification allows scanf to

read a string into a character array:
 scanf("%s", str);

•  str is treated as a pointer, so there’s no need to
put the & operator in front of str.

•  When scanf is called, it skips white space, then
reads characters and stores them in str until it
encounters a white-space character.

•  scanf always stores a null character at the end of
the string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 13: Strings

Reading Strings Using scanf and gets
•  scanf won’t usually read a full line of input.
•  A new-line character will cause scanf to stop

reading, but so will a space or tab character.
•  To read an entire line of input, we can use gets.
•  Properties of gets:

–  Doesn’t skip white space before starting to read input.
–  Reads until it finds a new-line character.
–  Discards the new-line character instead of storing it; the

null character takes its place.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 13: Strings

Reading Strings Using scanf and gets
•  Consider the following program fragment:
 char sentence[SENT_LEN+1];

 printf("Enter a sentence:\n");
 scanf("%s", sentence);

•  Suppose that after the prompt
 Enter a sentence:

 the user enters the line
 To C, or not to C: that is the question.

•  scanf will store the string "To" in sentence.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 13: Strings

Reading Strings Using scanf and gets
•  Suppose that we replace scanf by gets:
 gets(sentence);

•  When the user enters the same input as before,
gets will store the string

 " To C, or not to C: that is the question."

 in sentence.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 13: Strings

Reading Strings Using scanf and gets
•  As they read characters into an array, scanf and
gets have no way to detect when it’s full.

•  Consequently, they may store characters past the
end of the array, causing undefined behavior.

•  scanf can be made safer by using the conversion
specification %ns instead of %s.

•  n is an integer indicating the maximum number of
characters to be stored.

•  gets is inherently unsafe; fgets is a much
better alternative.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 13: Strings

Reading Strings Character by Character
•  Programmers often write their own input functions.
•  Issues to consider:

–  Should the function skip white space before beginning
to store the string?

–  What character causes the function to stop reading: a
new-line character, any white-space character, or some
other character? Is this character stored in the string or
discarded?

–  What should the function do if the input string is too
long to store: discard the extra characters or leave them
for the next input operation?

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 13: Strings

Reading Strings Character by Character
•  Suppose we need a function that (1) doesn’t skip

white-space characters, (2) stops reading at the first
new-line character (which isn’t stored in the string),
and (3) discards extra characters.

•  A prototype for the function:
 int read_line(char str[], int n);

•  If the input line contains more than n characters,
read_line will discard the additional characters.

•  read_line will return the number of characters it
stores in str.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 13: Strings

Reading Strings Character by Character
•  read_line consists primarily of a loop that calls
getchar to read a character and then stores the character
in str, provided that there’s room left:

 int read_line(char str[], int n)
 {
 int ch, i = 0;

 while ((ch = getchar()) != '\n')
 if (i < n)
 str[i++] = ch;
 str[i] = '\0'; /* terminates string */
 return i; /* number of characters stored */
 }

•  ch has int type rather than char type because
getchar returns an int value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 13: Strings

Reading Strings Character by Character
•  Before returning, read_line puts a null

character at the end of the string.
•  Standard functions such as scanf and gets

automatically put a null character at the end of an
input string.

•  If we’re writing our own input function, we must
take on that responsibility.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 13: Strings

Accessing the Characters in a String
•  Since strings are stored as arrays, we can use

subscripting to access the characters in a string.
•  To process every character in a string s, we can

set up a loop that increments a counter i and
selects characters via the expression s[i].

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 13: Strings

Accessing the Characters in a String
•  A function that counts the number of spaces in a

string:
 int count_spaces(const char s[])
 {
 int count = 0, i;

 for (i = 0; s[i] != '\0'; i++)
 if (s[i] == ' ')
 count++;
 return count;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 13: Strings

Accessing the Characters in a String
•  A version that uses pointer arithmetic instead of

array subscripting :
 int count_spaces(const char *s)
 {
 int count = 0;

 for (; *s != '\0'; s++)
 if (*s == ' ')
 count++;
 return count;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 13: Strings

Accessing the Characters in a String
•  Questions raised by the count_spaces

example:
–  Is it better to use array operations or pointer

operations to access the characters in a string? We can
use either or both. Traditionally, C programmers lean
toward using pointer operations.

–  Should a string parameter be declared as an array or
as a pointer? There’s no difference between the two.

–  Does the form of the parameter (s[] or *s) affect
what can be supplied as an argument? No.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 13: Strings

Using the C String Library
•  Some programming languages provide operators

that can copy strings, compare strings, concatenate
strings, select substrings, and the like.

•  C’s operators, in contrast, are essentially useless
for working with strings.

•  Strings are treated as arrays in C, so they’re
restricted in the same ways as arrays.

•  In particular, they can’t be copied or compared
using operators.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 13: Strings

Using the C String Library
•  Direct attempts to copy or compare strings will fail.
•  Copying a string into a character array using the =

operator is not possible:
 char str1[10], str2[10];
 …
 str1 = "abc"; /*** WRONG ***/
 str2 = str1; /*** WRONG ***/

 Using an array name as the left operand of = is illegal.
•  Initializing a character array using = is legal, though:
 char str1[10] = "abc";

 In this context, = is not the assignment operator.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 13: Strings

Using the C String Library
•  Attempting to compare strings using a relational

or equality operator is legal but won’t produce the
desired result:

 if (str1 == str2) … /*** WRONG ***/

•  This statement compares str1 and str2 as
pointers.

•  Since str1 and str2 have different addresses,
the expression str1 == str2 must have the
value 0.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 13: Strings

Using the C String Library
•  The C library provides a rich set of functions for

performing operations on strings.
•  Programs that need string operations should

contain the following line:
 #include <string.h>

•  In subsequent examples, assume that str1 and
str2 are character arrays used as strings.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 13: Strings

The strcpy (String Copy) Function
•  Prototype for the strcpy function:
 char *strcpy(char *s1, const char *s2);

•  strcpy copies the string s2 into the string s1.
–  To be precise, we should say “strcpy copies the

string pointed to by s2 into the array pointed to by
s1.”

•  strcpy returns s1 (a pointer to the destination
string).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 13: Strings

The strcpy (String Copy) Function
•  A call of strcpy that stores the string "abcd"

in str2:
 strcpy(str2, "abcd");
 /* str2 now contains "abcd" */

•  A call that copies the contents of str2 into
str1:

 strcpy(str1, str2);
 /* str1 now contains "abcd" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 13: Strings

The strcpy (String Copy) Function
•  In the call strcpy(str1, str2), strcpy has

no way to check that the str2 string will fit in the
array pointed to by str1.

•  If it doesn’t, undefined behavior occurs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 13: Strings

The strcpy (String Copy) Function
•  Calling the strncpy function is a safer, albeit

slower, way to copy a string.
•  strncpy has a third argument that limits the

number of characters that will be copied.
•  A call of strncpy that copies str2 into str1:
 strncpy(str1, str2, sizeof(str1));

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 13: Strings

The strcpy (String Copy) Function
•  strncpy will leave str1 without a terminating

null character if the length of str2 is greater than
or equal to the size of the str1 array.

•  A safer way to use strncpy:
 strncpy(str1, str2, sizeof(str1) - 1);
 str1[sizeof(str1)-1] = '\0';

•  The second statement guarantees that str1 is
always null-terminated.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 13: Strings

The strlen (String Length) Function
•  Prototype for the strlen function:
 size_t strlen(const char *s);

•  size_t is a typedef name that represents one
of C’s unsigned integer types.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 13: Strings

The strlen (String Length) Function
•  strlen returns the length of a string s, not

including the null character.
•  Examples:
 int len;

 len = strlen("abc"); /* len is now 3 */
 len = strlen(""); /* len is now 0 */
 strcpy(str1, "abc");
 len = strlen(str1); /* len is now 3 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 13: Strings

The strcat (String Concatenation) Function
•  Prototype for the strcat function:
 char *strcat(char *s1, const char *s2);

•  strcat appends the contents of the string s2 to the end of
the string s1.

•  It returns s1 (a pointer to the resulting string).
•  strcat examples:
 strcpy(str1, "abc");
 strcat(str1, "def");
 /* str1 now contains "abcdef" */
 strcpy(str1, "abc");
 strcpy(str2, "def");
 strcat(str1, str2);
 /* str1 now contains "abcdef" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 13: Strings

The strcat (String Concatenation) Function
•  As with strcpy, the value returned by strcat

is normally discarded.
•  The following example shows how the return

value might be used:
 strcpy(str1, "abc");
 strcpy(str2, "def");
 strcat(str1, strcat(str2, "ghi"));
 /* str1 now contains "abcdefghi";
 str2 contains "defghi" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 13: Strings

The strcat (String Concatenation) Function
•  strcat(str1, str2) causes undefined

behavior if the str1 array isn’t long enough to
accommodate the characters from str2.

•  Example:
 char str1[6] = "abc";

 strcat(str1, "def"); /*** WRONG ***/

•  str1 is limited to six characters, causing
strcat to write past the end of the array.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 13: Strings

The strcat (String Concatenation) Function
•  The strncat function is a safer but slower

version of strcat.
•  Like strncpy, it has a third argument that limits

the number of characters it will copy.
•  A call of strncat:
 strncat(str1, str2, sizeof(str1) - strlen(str1) - 1);

•  strncat will terminate str1 with a null
character, which isn’t included in the third
argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

Chapter 13: Strings

The strcmp (String Comparison) Function
•  Prototype for the strcmp function:
 int strcmp(const char *s1, const char *s2);

•  strcmp compares the strings s1 and s2,
returning a value less than, equal to, or greater
than 0, depending on whether s1 is less than,
equal to, or greater than s2.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 13: Strings

The strcmp (String Comparison) Function
•  Testing whether str1 is less than str2:
 if (strcmp(str1, str2) < 0) /* is str1 < str2? */
 …

•  Testing whether str1 is less than or equal to
str2:

 if (strcmp(str1, str2) <= 0) /* is str1 <= str2? */
 …

•  By choosing the proper operator (<, <=, >, >=,
==, !=), we can test any possible relationship
between str1 and str2.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 13: Strings

The strcmp (String Comparison) Function
•  strcmp considers s1 to be less than s2 if either

one of the following conditions is satisfied:
–  The first i characters of s1 and s2 match, but the (i+1)

st character of s1 is less than the (i+1)st character of
s2.

–  All characters of s1 match s2, but s1 is shorter than
s2.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 13: Strings

The strcmp (String Comparison) Function
•  As it compares two strings, strcmp looks at the

numerical codes for the characters in the strings.
•  Some knowledge of the underlying character set is

helpful to predict what strcmp will do.
•  Important properties of ASCII:

–  A–Z, a–z, and 0–9 have consecutive codes.
–  All upper-case letters are less than all lower-case

letters.
–  Digits are less than letters.
–  Spaces are less than all printing characters.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

60

Chapter 13: Strings

Program: Printing a One-Month Reminder
List

•  The remind.c program prints a one-month list
of daily reminders.

•  The user will enter a series of reminders, with
each prefixed by a day of the month.

•  When the user enters 0 instead of a valid day, the
program will print a list of all reminders entered,
sorted by day.

•  The next slide shows a session with the program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

61

Chapter 13: Strings

Program: Printing a One-Month Reminder
List

Enter day and reminder: 24 Susan's birthday
Enter day and reminder: 5 6:00 - Dinner with Marge and Russ
Enter day and reminder: 26 Movie - "Chinatown"
Enter day and reminder: 7 10:30 - Dental appointment
Enter day and reminder: 12 Movie - "Dazed and Confused"
Enter day and reminder: 5 Saturday class
Enter day and reminder: 12 Saturday class
Enter day and reminder: 0

Day Reminder
 5 Saturday class
 5 6:00 - Dinner with Marge and Russ
 7 10:30 - Dental appointment
 12 Saturday class
 12 Movie - "Dazed and Confused“
 24 Susan's birthday
 26 Movie - "Chinatown"

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

62

Chapter 13: Strings

Program: Printing a One-Month Reminder
List

•  Overall strategy:
–  Read a series of day-and-reminder combinations.
–  Store them in order (sorted by day).
–  Display them.

•  scanf will be used to read the days.
•  read_line will be used to read the reminders.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

63

Chapter 13: Strings

Program: Printing a One-Month Reminder
List

•  The strings will be stored in a two-dimensional
array of characters.

•  Each row of the array contains one string.
•  Actions taken after the program reads a day and its

associated reminder:
–  Search the array to determine where the day belongs,

using strcmp to do comparisons.
–  Use strcpy to move all strings below that point down

one position.
–  Copy the day into the array and call strcat to append

the reminder to the day.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

64

Chapter 13: Strings

Program: Printing a One-Month Reminder
List

•  One complication: how to right-justify the days in
a two-character field.

•  A solution: use scanf to read the day into an
integer variable, than call sprintf to convert the
day back into string form.

•  sprintf is similar to printf, except that it
writes output into a string.

•  The call
 sprintf(day_str, "%2d", day);

 writes the value of day into day_str.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

65

Chapter 13: Strings

Program: Printing a One-Month Reminder
List

•  The following call of scanf ensures that the user
doesn’t enter more than two digits:

 scanf("%2d", &day);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

66

Chapter 13: Strings

remind.c

/* Prints a one-month reminder list */

#include <stdio.h>
#include <string.h>

#define MAX_REMIND 50 /* maximum number of reminders */
#define MSG_LEN 60 /* max length of reminder message

*/

int read_line(char str[], int n);

int main(void)
{
 char reminders[MAX_REMIND][MSG_LEN+3];
 char day_str[3], msg_str[MSG_LEN+1];
 int day, i, j, num_remind = 0;

 for (;;) {
 if (num_remind == MAX_REMIND) {
 printf("-- No space left --\n");
 break;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

67

Chapter 13: Strings

 printf("Enter day and reminder: ");
 scanf("%2d", &day);
 if (day == 0)
 break;
 sprintf(day_str, "%2d", day);
 read_line(msg_str, MSG_LEN);

 for (i = 0; i < num_remind; i++)
 if (strcmp(day_str, reminders[i]) < 0)
 break;
 for (j = num_remind; j > i; j--)
 strcpy(reminders[j], reminders[j-1]);

 strcpy(reminders[i], day_str);
 strcat(reminders[i], msg_str);

 num_remind++;
 }

 printf("\nDay Reminder\n");
 for (i = 0; i < num_remind; i++)
 printf(" %s\n", reminders[i]);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

68

Chapter 13: Strings

int read_line(char str[], int n)
{
 int ch, i = 0;

 while ((ch = getchar()) != '\n')
 if (i < n)
 str[i++] = ch;
 str[i] = '\0';
 return i;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

69

Chapter 13: Strings

String Idioms
•  Functions that manipulate strings are a rich source

of idioms.
•  We’ll explore some of the most famous idioms by

using them to write the strlen and strcat
functions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

70

Chapter 13: Strings

Searching for the End of a String
•  A version of strlen that searches for the end of

a string, using a variable to keep track of the
string’s length:

 size_t strlen(const char *s)
 {
 size_t n;

 for (n = 0; *s != '\0'; s++)
 n++;
 return n;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

71

Chapter 13: Strings

Searching for the End of a String
•  To condense the function, we can move the

initialization of n to its declaration:
 size_t strlen(const char *s)
 {
 size_t n = 0;

 for (; *s != '\0'; s++)
 n++;
 return n;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

72

Chapter 13: Strings

Searching for the End of a String
•  The condition *s != '\0' is the same as *s != 0,

which in turn is the same as *s.
•  A version of strlen that uses these observations:
 size_t strlen(const char *s)
 {
 size_t n = 0;

 for (; *s; s++)
 n++;
 return n;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

73

Chapter 13: Strings

Searching for the End of a String
•  The next version increments s and tests *s in the

same expression:
 size_t strlen(const char *s)
 {
 size_t n = 0;

 for (; *s++;)
 n++;
 return n;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

74

Chapter 13: Strings

Searching for the End of a String
•  Replacing the for statement with a while

statement gives the following version of strlen:
 size_t strlen(const char *s)
 {
 size_t n = 0;

 while (*s++)
 n++;
 return n;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

75

Chapter 13: Strings

Searching for the End of a String
•  Although we’ve condensed strlen quite a bit,

it’s likely that we haven’t increased its speed.
•  A version that does run faster, at least with some

compilers:
 size_t strlen(const char *s)
 {
 const char *p = s;

 while (*s)
 s++;
 return s - p;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

76

Chapter 13: Strings

Searching for the End of a String
•  Idioms for “search for the null character at the end

of a string”:
 while (*s) while (*s++)
 s++; ;

•  The first version leaves s pointing to the null
character.

•  The second version is more concise, but leaves s
pointing just past the null character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

77

Chapter 13: Strings

Copying a String
•  Copying a string is another common operation.
•  To introduce C’s “string copy” idiom, we’ll

develop two versions of the strcat function.
•  The first version of strcat (next slide) uses a

two-step algorithm:
–  Locate the null character at the end of the string s1 and

make p point to it.
–  Copy characters one by one from s2 to where p is

pointing.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

78

Chapter 13: Strings

Copying a String
 char *strcat(char *s1, const char *s2)
 {
 char *p = s1;

 while (*p != '\0')
 p++;
 while (*s2 != '\0') {
 *p = *s2;
 p++;
 s2++;
 }
 *p = '\0';
 return s1;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

79

Chapter 13: Strings

Copying a String
•  p initially points to the first character in the s1

string:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

80

Chapter 13: Strings

Copying a String
•  The first while statement locates the null

character at the end of s1 and makes p point to it:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

81

Chapter 13: Strings

Copying a String
•  The second while statement repeatedly copies

one character from where s2 points to where p
points, then increments both p and s2.

•  Assume that s2 originally points to the string
"def".

•  The strings after the first loop iteration:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

82

Chapter 13: Strings

Copying a String
•  The loop terminates when s2 points to the null

character:

•  After putting a null character where p is pointing,
strcat returns.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

83

Chapter 13: Strings

Copying a String
•  Condensed version of strcat:
 char *strcat(char *s1, const char *s2)
 {
 char *p = s1;

 while (*p)
 p++;
 while (*p++ = *s2++)
 ;
 return s1;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

84

Chapter 13: Strings

Copying a String
•  The heart of the streamlined strcat function is

the “string copy” idiom:
 while (*p++ = *s2++)
 ;

•  Ignoring the two ++ operators, the expression
inside the parentheses is an assignment:

 *p = *s2

•  After the assignment, p and s2 are incremented.
•  Repeatedly evaluating this expression copies

characters from where s2 points to where p points.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

85

Chapter 13: Strings

Copying a String
•  But what causes the loop to terminate?
•  The while statement tests the character that was

copied by the assignment *p = *s2.
•  All characters except the null character test true.
•  The loop terminates after the assignment, so the

null character will be copied.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

86

Chapter 13: Strings

Arrays of Strings
•  There is more than one way to store an array of

strings.
•  One option is to use a two-dimensional array of

characters, with one string per row:
 char planets[][8] = {"Mercury", "Venus", "Earth",
 "Mars", "Jupiter", "Saturn",
 "Uranus", "Neptune", "Pluto"};

•  The number of rows in the array can be omitted,
but we must specify the number of columns.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

87

Chapter 13: Strings

Arrays of Strings
•  Unfortunately, the planets array contains a fair

bit of wasted space (extra null characters):

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

88

Chapter 13: Strings

Arrays of Strings
•  Most collections of strings will have a mixture of

long strings and short strings.
•  What we need is a ragged array, whose rows can

have different lengths.
•  We can simulate a ragged array in C by creating

an array whose elements are pointers to strings:
 char *planets[] = {"Mercury", "Venus", "Earth",
 "Mars", "Jupiter", "Saturn",
 "Uranus", "Neptune", "Pluto"};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

89

Chapter 13: Strings

Arrays of Strings
•  This small change has a dramatic effect on how
planets is stored:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

90

Chapter 13: Strings

Arrays of Strings
•  To access one of the planet names, all we need do

is subscript the planets array.
•  Accessing a character in a planet name is done in

the same way as accessing an element of a two-
dimensional array.

•  A loop that searches the planets array for
strings beginning with the letter M:

 for (i = 0; i < 9; i++)
 if (planets[i][0] == 'M')
 printf("%s begins with M\n", planets[i]);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

91

Chapter 13: Strings

Command-Line Arguments
•  When we run a program, we’ll often need to

supply it with information.
•  This may include a file name or a switch that

modifies the program’s behavior.
•  Examples of the UNIX ls command:
 ls
 ls –l
 ls -l remind.c

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

92

Chapter 13: Strings

Command-Line Arguments
•  Command-line information is available to all

programs, not just operating system commands.
•  To obtain access to command-line arguments,
main must have two parameters:

 int main(int argc, char *argv[])
 {
 …
 }

•  Command-line arguments are called program
parameters in the C standard.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

93

Chapter 13: Strings

Command-Line Arguments
•  argc (“argument count”) is the number of

command-line arguments.
•  argv (“argument vector”) is an array of pointers

to the command-line arguments (stored as strings).
•  argv[0] points to the name of the program,

while argv[1] through argv[argc-1] point
to the remaining command-line arguments.

•  argv[argc] is always a null pointer—a special
pointer that points to nothing.
–  The macro NULL represents a null pointer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

94

Chapter 13: Strings

Command-Line Arguments
•  If the user enters the command line
 ls -l remind.c

 then argc will be 3, and argv will have the
following appearance:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

95

Chapter 13: Strings

Command-Line Arguments
•  Since argv is an array of pointers, accessing

command-line arguments is easy.
•  Typically, a program that expects command-line

arguments will set up a loop that examines each
argument in turn.

•  One way to write such a loop is to use an integer
variable as an index into the argv array:

 int i;

 for (i = 1; i < argc; i++)
 printf("%s\n", argv[i]);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

96

Chapter 13: Strings

Command-Line Arguments
•  Another technique is to set up a pointer to argv
[1], then increment the pointer repeatedly:

 char **p;

 for (p = &argv[1]; *p != NULL; p++)
 printf("%s\n", *p);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

97

Chapter 13: Strings

Program: Checking Planet Names
•  The planet.c program illustrates how to access

command-line arguments.
•  The program is designed to check a series of strings to

see which ones are names of planets.
•  The strings are put on the command line:
 planet Jupiter venus Earth fred

•  The program will indicate whether each string is a planet
name and, if it is, display the planet’s number:

 Jupiter is planet 5
 venus is not a planet
 Earth is planet 3
 fred is not a planet

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

98

Chapter 13: Strings

planet.c

/* Checks planet names */

#include <stdio.h>
#include <string.h>

#define NUM_PLANETS 9

int main(int argc, char *argv[])
{
 char *planets[] = {"Mercury", "Venus", "Earth",
 "Mars", "Jupiter", "Saturn",
 "Uranus", "Neptune", "Pluto"};
 int i, j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

99

Chapter 13: Strings

 for (i = 1; i < argc; i++) {
 for (j = 0; j < NUM_PLANETS; j++)
 if (strcmp(argv[i], planets[j]) == 0) {
 printf("%s is planet %d\n", argv[i], j + 1);
 break;
 }
 if (j == NUM_PLANETS)
 printf("%s is not a planet\n", argv[i]);
 }

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

100

