
Chapter 19: Program Design

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 19

Program Design

Chapter 19: Program Design

Introduction
•  Most full-featured programs are at least 100,000

lines long.
•  Although C wasn’t designed for writing large

programs, many large programs have been written
in C.

•  Writing large programs is quite different from
writing small ones.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 19: Program Design

Introduction
•  Issues that arise when writing a large program:

–  Style
–  Documentation
–  Maintenance
–  Design

•  This chapter focuses on design techniques that can
make C programs readable and maintainable.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 19: Program Design

Modules
•  It’s often useful to view a program as a number of

independent modules.
•  A module is a collection of services, some of

which are made available to other parts of the
program (the clients).

•  Each module has an interface that describes the
available services.

•  The details of the module—including the source
code for the services themselves—are stored in the
module’s implementation.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 19: Program Design

Modules
•  In the context of C, “services” are functions.
•  The interface of a module is a header file

containing prototypes for the functions that will be
made available to clients (source files).

•  The implementation of a module is a source file
that contains definitions of the module’s
functions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 19: Program Design

Modules
•  The calculator program sketched in Chapter 15

consists of:
–  calc.c, which contains the main function
–  A stack module, stored in stack.h and stack.c

•  calc.c is a client of the stack module.
•  stack.h is the interface of the stack module.
•  stack.c is the implementation of the module.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 19: Program Design

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 19: Program Design

Modules
•  The C library is itself a collection of modules.
•  Each header in the library serves as the interface

to a module.
–  <stdio.h> is the interface to a module containing I/

O functions.
–  <string.h> is the interface to a module containing

string-handling functions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 19: Program Design

Modules
•  Advantages of dividing a program into modules:

–  Abstraction
–  Reusability
–  Maintainability

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 19: Program Design

Modules
•  Abstraction. A properly designed module can be

treated as an abstraction; we know what it does,
but we don’t worry about how it works.

•  Thanks to abstraction, it’s not necessary to
understand how the entire program works in order
to make changes to one part of it.

•  Abstraction also makes it easier for several
members of a team to work on the same program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 19: Program Design

Modules
•  Reusability. Any module that provides services is

potentially reusable in other programs.
•  Since it’s often hard to anticipate the future uses

of a module, it’s a good idea to design modules
for reusability.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 19: Program Design

Modules
•  Maintainability. A small bug will usually affect

only a single module implementation, making the
bug easier to locate and fix.

•  Rebuilding the program requires only a
recompilation of the module implementation
(followed by linking the entire program).

•  An entire module implementation can be replaced
if necessary.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 19: Program Design

Modules
•  Maintainability is the most critical advantage.
•  Most real-world programs are in service over a

period of years
•  During this period, bugs are discovered,

enhancements are made, and modifications are
made to meet changing requirements.

•  Designing a program in a modular fashion makes
maintenance much easier.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 19: Program Design

Modules
•  Decisions to be made during modular design:

–  What modules should a program have?
–  What services should each module provide?
–  How should the modules be interrelated?

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 19: Program Design

Cohesion and Coupling
•  In a well-designed program, modules should have

two properties.
•  High cohesion. The elements of each module

should be closely related to one another.
–  High cohesion makes modules easier to use and makes

the entire program easier to understand.

•  Low coupling. Modules should be as independent
of each other as possible.
–  Low coupling makes it easier to modify the program

and reuse modules.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 19: Program Design

Types of Modules
•  Modules tend to fall into certain categories:

–  Data pools
–  Libraries
–  Abstract objects
–  Abstract data types

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 19: Program Design

Types of Modules
•  A data pool is a collection of related variables

and/or constants.
–  In C, a module of this type is often just a header file.
–  <float.h> and <limits.h> are both data pools.

•  A library is a collection of related functions.
–  <string.h> is the interface to a library of string-

handling functions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 19: Program Design

Types of Modules
•  An abstract object is a collection of functions that

operate on a hidden data structure.
•  An abstract data type (ADT) is a type whose

representation is hidden.
–  Client modules can use the type to declare variables but

have no knowledge of the structure of those variables.
–  To perform an operation on such a variable, a client

must call a function provided by the ADT.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 19: Program Design

Information Hiding
•  A well-designed module often keeps some

information secret from its clients.
–  Clients of the stack module have no need to know

whether the stack is stored in an array, in a linked list,
or in some other form.

•  Deliberately concealing information from the
clients of a module is known as information
hiding.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 19: Program Design

Information Hiding
•  Primary advantages of information hiding:

–  Security. If clients don’t know how a module stores its
data, they won’t be able to corrupt it by tampering with
its internal workings.

–  Flexibility. Making changes—no matter how large—to
a module’s internals won’t be difficult.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 19: Program Design

Information Hiding
•  In C, the major tool for enforcing information

hiding is the static storage class.
–  A static variable with file scope has internal

linkage, preventing it from being accessed from other
files, including clients of the module.

–  A static function can be directly called only by
other functions in the same file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 19: Program Design

A Stack Module
•  To see the benefits of information hiding, let’s

look at two implementations of a stack module,
one using an array and the other a linked list.

•  stack.h is the module’s header file.
•  stack1.c uses an array to implement the stack.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 19: Program Design

stack.h

#ifndef STACK_H
#define STACK_H

#include <stdbool.h> /* C99 only */

void make_empty(void);
bool is_empty(void);
bool is_full(void);
void push(int i);
int pop(void);

#endif

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 19: Program Design

stack1.c

#include <stdio.h>
#include <stdlib.h>
#include "stack.h"

#define STACK_SIZE 100

static int contents[STACK_SIZE];
static int top = 0;

static void terminate(const char *message)
{
 printf("%s\n", message);
 exit(EXIT_FAILURE);
}

void make_empty(void)
{
 top = 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 19: Program Design

bool is_empty(void)
{
 return top == 0;
}

bool is_full(void)
{
 return top == STACK_SIZE;
}

void push(int i)
{
 if (is_full())
 terminate("Error in push: stack is full.");
 contents[top++] = i;
}

int pop(void)
{
 if (is_empty())
 terminate("Error in pop: stack is empty.");
 return contents[--top];
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 19: Program Design

A Stack Module
•  Macros can be used to indicate whether a function

or variable is “public” (accessible elsewhere in the
program) or “private” (limited to a single file):

 #define PUBLIC /* empty */
 #define PRIVATE static

•  The word static has more than one use in C;
PRIVATE makes it clear that we’re using it to
enforce information hiding.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 19: Program Design

A Stack Module
•  The stack implementation redone using PUBLIC and
PRIVATE:

 PRIVATE int contents[STACK_SIZE];
 PRIVATE int top = 0;

 PRIVATE void terminate(const char *message) { … }

 PUBLIC void make_empty(void) { … }

 PUBLIC bool is_empty(void) { … }

 PUBLIC bool is_full(void) { … }

 PUBLIC void push(int i) { … }

 PUBLIC int pop(void) { … }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 19: Program Design

A Stack Module
•  stack2.c is a linked-list implementation of the

stack module.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 19: Program Design

stack2.c

#include <stdio.h>
#include <stdlib.h>
#include "stack.h"

struct node {
 int data;
 struct node *next;
};

static struct node *top = NULL;

static void terminate(const char *message)
{
 printf("%s\n", message);
 exit(EXIT_FAILURE);
}

void make_empty(void)
{
 while (!is_empty())
 pop();
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 19: Program Design

bool is_empty(void)
{
 return top == NULL;
}

bool is_full(void)
{
 return false;
}

void push(int i)
{
 struct node *new_node = malloc(sizeof(struct node));
 if (new_node == NULL)
 terminate("Error in push: stack is full.");

 new_node->data = i;
 new_node->next = top;
 top = new_node;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 19: Program Design

int pop(void)
{
 struct node *old_top;
 int i;

 if (is_empty())
 terminate("Error in pop: stack is empty.");

 old_top = top;
 i = top->data;
 top = top->next;
 free(old_top);
 return i;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 19: Program Design

A Stack Module
•  Thanks to information hiding, it doesn’t matter

whether we use stack1.c or stack2.c to
implement the stack module.

•  Both versions match the module’s interface, so we
can switch from one to the other without having to
make changes elsewhere in the program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 19: Program Design

Abstract Data Types
•  A module that serves as an abstract object has a

serious disadvantage: there’s no way to have
multiple instances of the object.

•  To accomplish this, we’ll need to create a new
type.

•  For example, a Stack type can be used to create
any number of stacks.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 19: Program Design

Abstract Data Types
•  A program fragment that uses two stacks:
 Stack s1, s2;

 make_empty(&s1);
 make_empty(&s2);
 push(&s1, 1);
 push(&s2, 2);
 if (!is_empty(&s1))
 printf("%d\n", pop(&s1)); /* prints "1" */

•  To clients, s1 and s2 are abstractions that
respond to certain operations (make_empty,
is_empty, is_full, push, and pop).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 19: Program Design

Abstract Data Types
•  Converting the stack.h header so that it

provides a Stack type requires adding a Stack
(or Stack *) parameter to each function.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 19: Program Design

Abstract Data Types
•  Changes to stack.h are shown in bold:
 #define STACK_SIZE 100

 typedef struct {
 int contents[STACK_SIZE];
 int top;
 } Stack;

 void make_empty(Stack *s);
 bool is_empty(const Stack *s);
 bool is_full(const Stack *s);
 void push(Stack *s, int i);
 int pop(Stack *s);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 19: Program Design

Abstract Data Types
•  The stack parameters to make_empty, push,

and pop need to be pointers, since these functions
modify the stack.

•  The parameter to is_empty and is_full
doesn’t need to be a pointer.

•  Passing these functions a Stack pointer instead
of a Stack value is done for efficiency, since the
latter would result in a structure being copied.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 19: Program Design

Encapsulation
•  Unfortunately, Stack isn’t an abstract data type,

since stack.h reveals what the Stack type
really is.

•  Nothing prevents clients from using a Stack
variable as a structure:

 Stack s1;

 s1.top = 0;
 s1.contents[top++] = 1;

•  Providing access to the top and contents
members allows clients to corrupt the stack.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 19: Program Design

Encapsulation
•  Worse still, we can’t change the way stacks are

stored without having to assess the effect of the
change on clients.

•  What we need is a way to prevent clients from
knowing how the Stack type is represented.

•  C has only limited support for encapsulating
types in this way.

•  Newer C-based languages, including C++, Java,
and C#, are better equipped for this purpose.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 19: Program Design

Incomplete Types
•  The only tool that C gives us for encapsulation is

the incomplete type.
•  Incomplete types are “types that describe objects

but lack information needed to determine their
sizes.”

•  Example:
 struct t; /* incomplete declaration of t */

•  The intent is that an incomplete type will be
completed elsewhere in the program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 19: Program Design

Incomplete Types
•  An incomplete type can’t be used to declare a

variable:
 struct t s; /*** WRONG ***/

•  However, it’s legal to define a pointer type that
references an incomplete type:

 typedef struct t *T;

•  We can now declare variables of type T, pass them
as arguments to functions, and perform other
operations that are legal for pointers.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 19: Program Design

A Stack Abstract Data Type
•  The following stack ADT will illustrate how

abstract data types can be encapsulated using
incomplete types.

•  The stack will be implemented in three different
ways.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 19: Program Design

Defining the Interface for the Stack ADT
•  stackADT.h defines the stack ADT type and

gives prototypes for the functions that represent
stack operations.

•  The Stack type will be a pointer to a
stack_type structure (an incomplete type).

•  The members of this structure will depend on how
the stack is implemented.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 19: Program Design

stackADT.h
(version 1)

#ifndef STACKADT_H
#define STACKADT_H

#include <stdbool.h> /* C99 only */

typedef struct stack_type *Stack;

Stack create(void);
void destroy(Stack s);
void make_empty(Stack s);
bool is_empty(Stack s);
bool is_full(Stack s);
void push(Stack s, int i);
int pop(Stack s);

#endif

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 19: Program Design

Defining the Interface for the Stack ADT
•  Clients that include stackADT.h will be able to

declare variables of type Stack, each of which is
capable of pointing to a stack_type structure.

•  Clients can then call the functions declared in
stackADT.h to perform operations on stack
variables.

•  However, clients can’t access the members of the
stack_type structure, since that structure will
be defined in a separate file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 19: Program Design

Defining the Interface for the Stack ADT
•  A module generally doesn’t need create and
destroy functions, but an ADT does.
–  create dynamically allocates memory for a stack and

initializes the stack to its “empty” state.
–  destroy releases the stack’s dynamically allocated

memory.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 19: Program Design

Defining the Interface for the Stack ADT
•  stackclient.c can be used to test the stack

ADT.
•  It creates two stacks and performs a variety of

operations on them.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 19: Program Design

stackclient.c

#include <stdio.h>
#include "stackADT.h"

int main(void)
{
 Stack s1, s2;
 int n;

 s1 = create();
 s2 = create();

 push(s1, 1);
 push(s1, 2);

 n = pop(s1);
 printf("Popped %d from s1\n", n);
 push(s2, n);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 19: Program Design

 n = pop(s1);
 printf("Popped %d from s1\n", n);
 push(s2, n);

 destroy(s1);

 while (!is_empty(s2))
 printf("Popped %d from s2\n", pop(s2));

 push(s2, 3);
 make_empty(s2);
 if (is_empty(s2))
 printf("s2 is empty\n");
 else
 printf("s2 is not empty\n");

 destroy(s2);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 19: Program Design

Defining the Interface for the Stack ADT
•  Output if the stack ADT is implemented correctly:
 Popped 2 from s1
 Popped 1 from s1
 Popped 1 from s2
 Popped 2 from s2
 s2 is empty

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 19: Program Design

Implementing the Stack ADT
Using a Fixed-Length Array

•  There are several ways to implement the stack
ADT.

•  The simplest is to have the stack_type
structure contain a fixed-length array:

 struct stack_type {
 int contents[STACK_SIZE];
 int top;
 };

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 19: Program Design

stackADT.c

#include <stdio.h>
#include <stdlib.h>
#include "stackADT.h"

#define STACK_SIZE 100

struct stack_type {
 int contents[STACK_SIZE];
 int top;
};

static void terminate(const char *message)
{
 printf("%s\n", message);
 exit(EXIT_FAILURE);
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 19: Program Design

Stack create(void)
{
 Stack s = malloc(sizeof(struct stack_type));
 if (s == NULL)
 terminate("Error in create: stack could not be created.");
 s->top = 0;
 return s;
}

void destroy(Stack s)
{
 free(s);
}

void make_empty(Stack s)
{
 s->top = 0;
}

bool is_empty(Stack s)
{
 return s->top == 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 19: Program Design

bool is_full(Stack s)
{
 return s->top == STACK_SIZE;
}

void push(Stack s, int i)
{
 if (is_full(s))
 terminate("Error in push: stack is full.");
 s->contents[s->top++] = i;
}

int pop(Stack s)
{
 if (is_empty(s))
 terminate("Error in pop: stack is empty.");
 return s->contents[--s->top];
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 19: Program Design

Changing the Item Type in the Stack ADT
•  stackADT.c requires that stack items be

integers, which is too restrictive.
•  To make the stack ADT easier to modify for

different item types, let’s add a type definition to
the stackADT.h header.

•  It will define a type named Item, representing the
type of data to be stored on the stack.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 19: Program Design

stackADT.h
(version 2)

#ifndef STACKADT_H
#define STACKADT_H

#include <stdbool.h> /* C99 only */

typedef int Item;

typedef struct stack_type *Stack;

Stack create(void);
void destroy(Stack s);
void make_empty(Stack s);
bool is_empty(Stack s);
bool is_full(Stack s);
void push(Stack s, Item i);
Item pop(Stack s);

#endif
 Copyright © 2008 W. W. Norton & Company.

All rights reserved.
56

Chapter 19: Program Design

Changing the Item Type in the Stack ADT
•  The stackADT.c file will need to be modified,

but the changes are minimal.
•  The updated stack_type structure:
 struct stack_type {
 Item contents[STACK_SIZE];
 int top;
 };

•  The second parameter of push will now have
type Item.

•  pop now returns a value of type Item.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 19: Program Design

Changing the Item Type in the Stack ADT
•  The stackclient.c file can be used to test the

new stackADT.h and stackADT.c to verify
that the Stack type still works.

•  The item type can be changed by modifying the
definition of Item in stackADT.h.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 19: Program Design

Implementing the Stack ADT
Using a Dynamic Array

•  Another problem with the stack ADT: each stack
has a fixed maximum size.

•  There’s no way to have stacks with different
capacities or to set the stack size as the program is
running.

•  Possible solutions to this problem:
–  Implement the stack as a linked list.
–  Store stack items in a dynamically allocated array.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 19: Program Design

Implementing the Stack ADT
Using a Dynamic Array

•  The latter approach involves modifying the
stack_type structure.

•  The contents member becomes a pointer to the
array in which the items are stored:

 struct stack_type {
 Item *contents;
 int top;
 int size;
 };

•  The size member stores the stack’s maximum
size.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

60

Chapter 19: Program Design

Implementing the Stack ADT
Using a Dynamic Array

•  The create function will now have a parameter
that specifies the desired maximum stack size:

 Stack create(int size);

•  When create is called, it will create a
stack_type structure plus an array of length
size.

•  The contents member of the structure will
point to this array.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

61

Chapter 19: Program Design

Implementing the Stack ADT
Using a Dynamic Array

•  stackADT.h will be the same as before, except
that create will have a size parameter.

•  The new version will be named stackADT2.h.
•  stackADT.c will need more extensive

modification, yielding stackADT2.c.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

62

Chapter 19: Program Design

stackADT2.c

#include <stdio.h>
#include <stdlib.h>
#include "stackADT2.h"

struct stack_type {
 Item *contents;
 int top;
 int size;
};

static void terminate(const char *message)
{
 printf("%s\n", message);
 exit(EXIT_FAILURE);
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

63

Chapter 19: Program Design

Stack create(int size)
{
 Stack s = malloc(sizeof(struct stack_type));
 if (s == NULL)
 terminate("Error in create: stack could not be created.");
 s->contents = malloc(size * sizeof(Item));
 if (s->contents == NULL) {
 free(s);
 terminate("Error in create: stack could not be created.");
 }
 s->top = 0;
 s->size = size;
 return s;
}

void destroy(Stack s)
{
 free(s->contents);
 free(s);
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

64

Chapter 19: Program Design

void make_empty(Stack s)
{
 s->top = 0;
}

bool is_empty(Stack s)
{
 return s->top == 0;
}

bool is_full(Stack s)
{
 return s->top == s->size;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

65

Chapter 19: Program Design

void push(Stack s, Item i)
{
 if (is_full(s))
 terminate("Error in push: stack is full.");
 s->contents[s->top++] = i;
}

Item pop(Stack s)
{
 if (is_empty(s))
 terminate("Error in pop: stack is empty.");
 return s->contents[--s->top];
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

66

Chapter 19: Program Design

Implementing the Stack ADT
Using a Dynamic Array

•  The stackclient.c file can again be used to
test the stack ADT.

•  The calls of create will need to be changed,
since create now requires an argument.

•  Example:
 s1 = create(100);
 s2 = create(200);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

67

Chapter 19: Program Design

Implementing the Stack ADT
Using a Linked List

•  Implementing the stack ADT using a dynamically
allocated array provides more flexibility than
using a fixed-size array.

•  However, the client is still required to specify a
maximum size for a stack at the time it’s created.

•  With a linked-list implementation, there won’t be
any preset limit on the size of a stack.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

68

Chapter 19: Program Design

Implementing the Stack ADT
Using a Linked List

•  The linked list will consist of nodes, represented
by the following structure:

 struct node {
 Item data;
 struct node *next;
 };

•  The stack_type structure will contain a pointer
to the first node in the list:

 struct stack_type {
 struct node *top;
 };

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

69

Chapter 19: Program Design

Implementing the Stack ADT
Using a Linked List

•  The stack_type structure seems superfluous,
since Stack could be defined to be struct
node *.

•  However, stack_type is needed so that the
interface to the stack remains unchanged.

•  Moreover, having the stack_type structure
will make it easier to change the implementation
in the future.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

70

Chapter 19: Program Design

Implementing the Stack ADT
Using a Linked List

•  Implementing the stack ADT using a linked list
involves modifying the stackADT.c file to
create a new version named stackADT3.c.

•  The stackADT.h header is unchanged.
•  The original stackclient.c file can be used

for testing.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

71

Chapter 19: Program Design

stackADT3.c

#include <stdio.h>
#include <stdlib.h>
#include "stackADT.h"

struct node {
 Item data;
 struct node *next;
};

struct stack_type {
 struct node *top;
};

static void terminate(const char *message)
{
 printf("%s\n", message);
 exit(EXIT_FAILURE);
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

72

Chapter 19: Program Design

Stack create(void)
{
 Stack s = malloc(sizeof(struct stack_type));
 if (s == NULL)
 terminate("Error in create: stack could not be created.");
 s->top = NULL;
 return s;
}

void destroy(Stack s)
{
 make_empty(s);
 free(s);
}

void make_empty(Stack s)
{
 while (!is_empty(s))
 pop(s);
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

73

Chapter 19: Program Design

bool is_empty(Stack s)
{
 return s->top == NULL;
}

bool is_full(Stack s)
{
 return false;
}

void push(Stack s, Item i)
{
 struct node *new_node = malloc(sizeof(struct node));
 if (new_node == NULL)
 terminate("Error in push: stack is full.");

 new_node->data = i;
 new_node->next = s->top;
 s->top = new_node;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

74

Chapter 19: Program Design

Item pop(Stack s)
{
 struct node *old_top;
 Item i;

 if (is_empty(s))
 terminate("Error in pop: stack is empty.");

 old_top = s->top;
 i = old_top->data;
 s->top = old_top->next;
 free(old_top);
 return i;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

75

Chapter 19: Program Design

Design Issues for Abstract Data Types
•  The stack ADT suffers from several problems that

prevent it from being industrial-strength.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

76

Chapter 19: Program Design

Naming Conventions
•  The stack ADT functions currently have short,

easy-to-understand names, such as create.
•  If a program has more than one ADT, name

clashes are likely.
•  It will probably be necessary for function names to

incorporate the ADT name (stack_create).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

77

Chapter 19: Program Design

Error Handling
•  The stack ADT deals with errors by displaying an

error message and terminating the program.
•  It might be better to provide a way for a program

to recover from errors rather than terminating.
•  An alternative is to have the push and pop

functions return a bool value to indicate whether
or not they succeeded.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

78

Chapter 19: Program Design

Error Handling
•  The C standard library contains a parameterized

macro named assert that can terminate a
program if a specified condition isn’t satisfied.

•  We could use calls of this macro as replacements
for the if statements and calls of terminate
that currently appear in the stack ADT.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

79

Chapter 19: Program Design

Generic ADTs
•  Other problems with the stack ADT:

–  Changing the type of items stored in a stack requires
modifying the definition of the Item type.

–  A program can’t create two stacks whose items have
different types.

•  We’d like to have a single “generic” stack type.
•  There’s no completely satisfactory way to create

such a type in C.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

80

Chapter 19: Program Design

Generic ADTs
•  The most common approach uses void * as the

item type:
 void push(Stack s, void *p);
 void *pop(Stack s);

 pop returns a null pointer if the stack is empty.
•  Disadvantages of using void * as the item type:

–  Doesn’t work for data that can’t be represented in
pointer form, including basic types such as int and
double.

–  Error checking is no longer possible, because stack
items can be a mixture of pointers of different types.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

81

Chapter 19: Program Design

ADTs in Newer Languages
•  These problems are dealt with much more cleanly

in newer C-based languages.
–  Name clashes are prevented by defining function names

within a class.
–  Exception handling allows functions to “throw” an

exception when they detect an error condition.
–  Some languages provide special features for defining

generic ADTs. (C++ templates are an example.)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

82

