
Chapter 22: Input/Output

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 22

Input/Output

Chapter 22: Input/Output

Introduction
•  C’s input/output library is the biggest and most

important part of the standard library.
•  The <stdio.h> header is the primary repository

of input/output functions, including printf,
scanf, putchar, getchar, puts, and gets.

•  This chapter provides more information about
these six functions.

•  It also introduces many new functions, most of
which deal with files.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 22: Input/Output

Introduction
•  Topics to be covered:

–  Streams, the FILE type, input and output redirection,
and the difference between text files and binary files

–  Functions designed specifically for use with files,
including functions that open and close files

–  Functions that perform “formatted” input/output
–  Functions that read and write unformatted data

(characters, lines, and blocks)
–  Random access operations on files
–  Functions that write to a string or read from a string

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 22: Input/Output

Introduction
•  In C99, some I/O functions belong to the
<wchar.h> header.

•  The <wchar.h> functions deal with wide
characters rather than ordinary characters.

•  Functions in <stdio.h> that read or write data
are known as byte input/output functions.

•  Similar functions in <wchar.h> are called wide-
character input/output functions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 22: Input/Output

Streams
•  In C, the term stream means any source of input

or any destination for output.
•  Many small programs obtain all their input from

one stream (the keyboard) and write all their
output to another stream (the screen).

•  Larger programs may need additional streams.
•  Streams often represent files stored on various

media.
•  However, they could just as easily be associated

with devices such as network ports and printers.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 22: Input/Output

File Pointers
•  Accessing a stream is done through a file pointer,

which has type FILE *.
•  The FILE type is declared in <stdio.h>.
•  Certain streams are represented by file pointers

with standard names.
•  Additional file pointers can be declared as needed:
 FILE *fp1, *fp2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 22: Input/Output

Standard Streams and Redirection
•  <stdio.h> provides three standard streams:

 File Pointer Stream Default Meaning
 stdin Standard input Keyboard
 stdout Standard output Screen
 stderr Standard error Screen

•  These streams are ready to use—we don’t declare
them, and we don’t open or close them.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 22: Input/Output

Standard Streams and Redirection
•  The I/O functions discussed in previous chapters

obtain input from stdin and send output to
stdout.

•  Many operating systems allow these default
meanings to be changed via a mechanism known
as redirection.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 22: Input/Output

Standard Streams and Redirection
•  A typical technique for forcing a program to

obtain its input from a file instead of from the
keyboard:

 demo <in.dat

 This technique is known as input redirection.
•  Output redirection is similar:
 demo >out.dat

 All data written to stdout will now go into the
out.dat file instead of appearing on the screen.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 22: Input/Output

Standard Streams and Redirection
•  Input redirection and output redirection can be

combined:
 demo <in.dat >out.dat

•  The < and > characters don’t have to be adjacent
to file names, and the order in which the redirected
files are listed doesn’t matter:

 demo < in.dat > out.dat
 demo >out.dat <in.dat

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 22: Input/Output

Standard Streams and Redirection
•  One problem with output redirection is that

everything written to stdout is put into a file.
•  Writing error messages to stderr instead of
stdout guarantees that they will appear on the
screen even when stdout has been redirected.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 22: Input/Output

Text Files versus Binary Files
•  <stdio.h> supports two kinds of files: text and

binary.
•  The bytes in a text file represent characters,

allowing humans to examine or edit the file.
–  The source code for a C program is stored in a text file.

•  In a binary file, bytes don’t necessarily represent
characters.
–  Groups of bytes might represent other types of data, such

as integers and floating-point numbers.
–  An executable C program is stored in a binary file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 22: Input/Output

Text Files versus Binary Files
•  Text files have two characteristics that binary files

don’t possess.
•  Text files are divided into lines. Each line in a text

file normally ends with one or two special
characters.
–  Windows: carriage-return character ('\x0d')

followed by line-feed character ('\x0a')
–  UNIX and newer versions of Mac OS: line-feed

character
–  Older versions of Mac OS: carriage-return character

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 22: Input/Output

Text Files versus Binary Files
•  Text files may contain a special “end-of-file”

marker.
–  In Windows, the marker is '\x1a' (Ctrl-Z), but it is

not required.
–  Most other operating systems, including UNIX, have no

special end-of-file character.
•  In a binary file, there are no end-of-line or end-of-

file markers; all bytes are treated equally.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 22: Input/Output

Text Files versus Binary Files
•  When data is written to a file, it can be stored in

text form or in binary form.
•  One way to store the number 32767 in a file would

be to write it in text form as the characters 3, 2, 7,
6, and 7:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 22: Input/Output

Text Files versus Binary Files
•  The other option is to store the number in binary,

which would take as few as two bytes:

•  Storing numbers in binary can often save space.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 22: Input/Output

Text Files versus Binary Files
•  Programs that read from a file or write to a file

must take into account whether it’s text or binary.
•  A program that displays the contents of a file on

the screen will probably assume it’s a text file.
•  A file-copying program, on the other hand, can’t

assume that the file to be copied is a text file.
–  If it does, binary files containing an end-of-file

character won’t be copied completely.

•  When we can’t say for sure whether a file is text
or binary, it’s safer to assume that it’s binary.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 22: Input/Output

File Operations
•  Simplicity is one of the attractions of input and

output redirection.
•  Unfortunately, redirection is too limited for many

applications.
–  When a program relies on redirection, it has no control

over its files; it doesn’t even know their names.
–  Redirection doesn’t help if the program needs to read

from two files or write to two files at the same time.
•  When redirection isn’t enough, we’ll use the file

operations that <stdio.h> provides.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 22: Input/Output

Opening a File
•  Opening a file for use as a stream requires a call of

the fopen function.
•  Prototype for fopen:
 FILE *fopen(const char * restrict filename,
 const char * restrict mode);

•  filename is the name of the file to be opened.
–  This argument may include information about the file’s

location, such as a drive specifier or path.

•  mode is a “mode string” that specifies what
operations we intend to perform on the file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 22: Input/Output

Opening a File
•  The word restrict appears twice in the

prototype for fopen.
•  restrict, which is a C99 keyword, indicates

that filename and mode should point to strings
that don’t share memory locations.

•  The C89 prototype for fopen doesn’t contain
restrict but is otherwise identical.

•  restrict has no effect on the behavior of
fopen, so it can usually be ignored.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 22: Input/Output

Opening a File
•  In Windows, be careful when the file name in a call of
fopen includes the \ character.

•  The call
 fopen("c:\project\test1.dat", "r")

 will fail, because \t is treated as a character escape.
•  One way to avoid the problem is to use \\ instead of \:
 fopen("c:\\project\\test1.dat", "r")

•  An alternative is to use the / character instead of \:
 fopen("c:/project/test1.dat", "r")

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 22: Input/Output

Opening a File
•  fopen returns a file pointer that the program can

(and usually will) save in a variable:
 fp = fopen("in.dat", "r");
 /* opens in.dat for reading */

•  When it can’t open a file, fopen returns a null
pointer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 22: Input/Output

Modes
•  Factors that determine which mode string to pass

to fopen:
–  Which operations are to be performed on the file
–  Whether the file contains text or binary data

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 22: Input/Output

Modes
•  Mode strings for text files:

 String Meaning
 "r" Open for reading
 "w" Open for writing (file need not exist)
 "a" Open for appending (file need not exist)
 "r+" Open for reading and writing, starting at beginning
 "w+" Open for reading and writing (truncate if file exists)
 "a+" Open for reading and writing (append if file exists)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 22: Input/Output

Modes
•  Mode strings for binary files:

 String Meaning
 "rb" Open for reading
 "wb" Open for writing (file need not exist)
 "ab" Open for appending (file need not exist)

 "r+b" or "rb+" Open for reading and writing, starting at beginning
 "w+b" or "wb+" Open for reading and writing (truncate if file exists)
 "a+b" or "ab+" Open for reading and writing (append if file exists)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 22: Input/Output

Modes
•  Note that there are different mode strings for

writing data and appending data.
•  When data is written to a file, it normally

overwrites what was previously there.
•  When a file is opened for appending, data written

to the file is added at the end.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 22: Input/Output

Modes
•  Special rules apply when a file is opened for both

reading and writing.
–  Can’t switch from reading to writing without first

calling a file-positioning function unless the reading
operation encountered the end of the file.

–  Can’t switch from writing to reading without either
calling fflush or calling a file-positioning function.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 22: Input/Output

Closing a File
•  The fclose function allows a program to close a

file that it’s no longer using.
•  The argument to fclose must be a file pointer

obtained from a call of fopen or freopen.
•  fclose returns zero if the file was closed

successfully.
•  Otherwise, it returns the error code EOF (a macro

defined in <stdio.h>).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 22: Input/Output

Closing a File
•  The outline of a program that opens a file for reading:
 #include <stdio.h>
 #include <stdlib.h>

 #define FILE_NAME "example.dat"

 int main(void)
 {
 FILE *fp;

 fp = fopen(FILE_NAME, "r");
 if (fp == NULL) {
 printf("Can't open %s\n", FILE_NAME);
 exit(EXIT_FAILURE);
 }
 …
 fclose(fp);
 return 0;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 22: Input/Output

Closing a File
•  It’s not unusual to see the call of fopen

combined with the declaration of fp:
 FILE *fp = fopen(FILE_NAME, "r");

 or the test against NULL:
 if ((fp = fopen(FILE_NAME, "r")) == NULL) …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 22: Input/Output

Attaching a File to an Open Stream
•  freopen attaches a different file to a stream

that’s already open.
•  The most common use of freopen is to

associate a file with one of the standard streams
(stdin, stdout, or stderr).

•  A call of freopen that causes a program to begin
writing to the file foo:

 if (freopen("foo", "w", stdout) == NULL)
{

 /* error; foo can't be opened */
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 22: Input/Output

Attaching a File to an Open Stream
•  freopen’s normal return value is its third

argument (a file pointer).
•  If it can’t open the new file, freopen returns a

null pointer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 22: Input/Output

Attaching a File to an Open Stream
•  C99 adds a new twist: if filename is a null

pointer, freopen attempts to change the
stream’s mode to that specified by the mode
parameter.

•  Implementations aren’t required to support this
feature.

•  If they do, they may place restrictions on which
mode changes are permitted.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 22: Input/Output

Obtaining File Names from the Command Line

•  There are several ways to supply file names to a
program.
–  Building file names into the program doesn’t provide

much flexibility.
–  Prompting the user to enter file names can be awkward.
–  Having the program obtain file names from the

command line is often the best solution.

•  An example that uses the command line to supply
two file names to a program named demo:

 demo names.dat dates.dat

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 22: Input/Output

Obtaining File Names from the Command Line

•  Chapter 13 showed how to access command-line
arguments by defining main as a function with
two parameters:

 int main(int argc, char *argv[])
 {
 …
 }

•  argc is the number of command-line arguments.
•  argv is an array of pointers to the argument

strings.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 22: Input/Output

Obtaining File Names from the Command Line

•  argv[0] points to the program name, argv[1]
through argv[argc-1] point to the remaining
arguments, and argv[argc] is a null pointer.

•  In the demo example, argc is 3 and argv has the
following appearance:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 22: Input/Output

Program: Checking Whether
a File Can Be Opened

•  The canopen.c program determines if a file
exists and can be opened for reading.

•  The user will give the program a file name to
check:

 canopen file
•  The program will then print either file can be
opened or file can't be opened.

•  If the user enters the wrong number of arguments
on the command line, the program will print the
message usage: canopen filename.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 22: Input/Output

canopen.c

/* Checks whether a file can be opened for reading */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *fp;

 if (argc != 2) {
 printf("usage: canopen filename\n");
 exit(EXIT_FAILURE);
 }

 if ((fp = fopen(argv[1], "r")) == NULL) {
 printf("%s can't be opened\n", argv[1]);
 exit(EXIT_FAILURE);
 }

 printf("%s can be opened\n", argv[1]);
 fclose(fp);
 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 22: Input/Output

Temporary Files
•  Programs often need to create temporary files—

files that exist only as long as the program is
running.

•  <stdio.h> provides two functions, tmpfile
and tmpnam, for working with temporary files.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 22: Input/Output

Temporary Files
•  tmpfile creates a temporary file (opened in
"wb+" mode) that will exist until it’s closed or
the program ends.

•  A call of tmpfile returns a file pointer that can
be used to access the file later:

 FILE *tempptr;
 …
 tempptr = tmpfile();
 /* creates a temporary file */

•  If it fails to create a file, tmpfile returns a null
pointer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 22: Input/Output

Temporary Files
•  Drawbacks of using tmpfile:

–  Don’t know the name of the file that tmpfile creates.
–  Can’t decide later to make the file permanent.

•  The alternative is to create a temporary file using
fopen.

•  The tmpnam function is useful for ensuring that
this file doesn’t have the same name as an
existing file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 22: Input/Output

Temporary Files
•  tmpnam generates a name for a temporary file.
•  If its argument is a null pointer, tmpnam stores

the file name in a static variable and returns a
pointer to it:

 char *filename;
 …
 filename = tmpnam(NULL);
 /* creates a temporary file name */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 22: Input/Output

Temporary Files
•  Otherwise, tmpnam copies the file name into a

character array provided by the programmer:
 char filename[L_tmpnam];
 …
 tmpnam(filename);
 /* creates a temporary file name */

•  In this case, tmpnam also returns a pointer to the
first character of this array.

•  L_tmpnam is a macro in <stdio.h> that
specifies how long to make a character array that
will hold a temporary file name.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 22: Input/Output

Temporary Files
•  The TMP_MAX macro (defined in <stdio.h>)

specifies the maximum number of temporary file
names that can be generated by tmpnam.

•  If it fails to generate a file name, tmpnam returns
a null pointer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 22: Input/Output

File Buffering
•  Transferring data to or from a disk drive is a

relatively slow operation.
•  The secret to achieving acceptable performance is

buffering.
•  Data written to a stream is actually stored in a

buffer area in memory; when it’s full (or the
stream is closed), the buffer is “flushed.”

•  Input streams can be buffered in a similar way: the
buffer contains data from the input device; input is
read from this buffer instead of the device itself.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 22: Input/Output

File Buffering
•  Buffering can result in enormous gains in

efficiency, since reading a byte from a buffer or
storing a byte in a buffer is very fast.

•  It takes time to transfer the buffer contents to or
from disk, but one large “block move” is much
faster than many tiny byte moves.

•  The functions in <stdio.h> perform buffering
automatically when it seems advantageous.

•  On rare occasions, we may need to use the
functions fflush, setbuf, and setvbuf.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 22: Input/Output

File Buffering
•  By calling fflush, a program can flush a file’s

buffer as often as it wishes.
•  A call that flushes the buffer for the file associated

with fp:
 fflush(fp); /* flushes buffer for fp */

•  A call that flushes all output streams:
 fflush(NULL); /* flushes all buffers */

•  fflush returns zero if it’s successful and EOF if
an error occurs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 22: Input/Output

File Buffering
•  setvbuf allows us to change the way a stream is

buffered and to control the size and location of the
buffer.

•  The function’s third argument specifies the kind
of buffering desired:

 _IOFBF (full buffering)
 _IOLBF (line buffering)
 _IONBF (no buffering)

•  Full buffering is the default for streams that aren’t
connected to interactive devices.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 22: Input/Output

File Buffering
•  setvbuf’s second argument (if it’s not a null

pointer) is the address of the desired buffer.
•  The buffer might have static storage duration,

automatic storage duration, or even be allocated
dynamically.

•  setvbuf’s last argument is the number of bytes
in the buffer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 22: Input/Output

File Buffering
•  A call of setvbuf that changes the buffering of
stream to full buffering, using the N bytes in the
buffer array as the buffer:

 char buffer[N];
 …
 setvbuf(stream, buffer, _IOFBF, N);

•  setvbuf must be called after stream is opened
but before any other operations are performed on
it.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 22: Input/Output

File Buffering
•  It’s also legal to call setvbuf with a null pointer

as the second argument, which requests that
setvbuf create a buffer with the specified size.

•  setvbuf returns zero if it’s successful.
•  It returns a nonzero value if the mode argument is

invalid or the request can’t be honored.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 22: Input/Output

File Buffering
•  setbuf is an older function that assumes default

values for the buffering mode and buffer size.
•  If buf is a null pointer, the call setbuf
(stream, buf) is equivalent to

 (void) setvbuf(stream, NULL, _IONBF, 0);

•  Otherwise, it’s equivalent to
 (void) setvbuf(stream, buf, _IOFBF, BUFSIZ);

 where BUFSIZ is a macro defined in
<stdio.h>.

•  setbuf is considered to be obsolete.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 22: Input/Output

Miscellaneous File Operations
•  The remove and rename functions allow a

program to perform basic file management
operations.

•  Unlike most other functions in this section,
remove and rename work with file names
instead of file pointers.

•  Both functions return zero if they succeed and a
nonzero value if they fail.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 22: Input/Output

Miscellaneous File Operations
•  remove deletes a file:
 remove("foo");
 /* deletes the file named "foo" */

•  If a program uses fopen (instead of tmpfile)
to create a temporary file, it can use remove to
delete the file before the program terminates.

•  The effect of removing a file that’s currently open
is implementation-defined.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 22: Input/Output

Miscellaneous File Operations
•  rename changes the name of a file:
 rename("foo", "bar");
 /* renames "foo" to "bar" */

•  rename is handy for renaming a temporary file
created using fopen if a program should decide
to make it permanent.
–  If a file with the new name already exists, the effect is

implementation-defined.

•  rename may fail if asked to rename an open file.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 22: Input/Output

Formatted I/O
•  The next group of library functions use format

strings to control reading and writing.
•  printf and related functions are able to convert

data from numeric form to character form during
output.

•  scanf and related functions are able to convert
data from character form to numeric form during
input.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

Chapter 22: Input/Output

The …printf Functions
•  The fprintf and printf functions write a variable

number of data items to an output stream, using a format
string to control the appearance of the output.

•  The prototypes for both functions end with the ...
symbol (an ellipsis), which indicates a variable number
of additional arguments:

 int fprintf(FILE * restrict stream,
 const char * restrict format, ...);
 int printf(const char * restrict format, ...);

•  Both functions return the number of characters written; a
negative return value indicates that an error occurred.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 22: Input/Output

The …printf Functions
•  printf always writes to stdout, whereas
fprintf writes to the stream indicated by its
first argument:

 printf("Total: %d\n", total);
 /* writes to stdout */

 fprintf(fp, "Total: %d\n", total);
 /* writes to fp */

•  A call of printf is equivalent to a call of
fprintf with stdout as the first argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 22: Input/Output

The …printf Functions
•  fprintf works with any output stream.
•  One of its most common uses is to write error

messages to stderr:
 fprintf(stderr, "Error: data file can't be opened.
\n");

•  Writing a message to stderr guarantees that it
will appear on the screen even if the user redirects
stdout.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 22: Input/Output

The …printf Functions
•  Two other functions in <stdio.h> can write

formatted output to a stream.
•  These functions, named vfprintf and
vprintf, are fairly obscure.

•  Both rely on the va_list type, which is declared
in <stdarg.h>, so they’re discussed along with
that header.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

60

Chapter 22: Input/Output

…printf Conversion Specifications
•  Both printf and fprintf require a format

string containing ordinary characters and/or
conversion specifications.
–  Ordinary characters are printed as is.
–  Conversion specifications describe how the remaining

arguments are to be converted to character form for
display.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

61

Chapter 22: Input/Output

…printf Conversion Specifications
•  A …printf conversion specification consists of

the % character, followed by as many as five
distinct items:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

62

Chapter 22: Input/Output

…printf Conversion Specifications
•  Flags (optional; more than one permitted):

 Flag Meaning
 - Left-justify within field.
 + Numbers produced by signed conversions always begin with
 + or -.
 space Nonnegative numbers produced by signed conversions are
 preceded by a space.
 # Octal numbers begin with 0, nonzero hexadecimal numbers
 with 0x or 0X. Floating-point numbers always have a
 decimal point. Trailing zeros aren’t removed from numbers
 printed with the g or G conversions.
 0 Numbers are padded with leading zeros up to the field width.
 (zero)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

63

Chapter 22: Input/Output

…printf Conversion Specifications
•  Minimum field width (optional). An item that’s

too small to occupy the field will be padded.
–  By default, spaces are added to the left of the item.

•  An item that’s too large for the field width will
still be displayed in its entirety.

•  The field width is either an integer or the character
*.
–  If * is present, the field width is obtained from the next

argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

64

Chapter 22: Input/Output

…printf Conversion Specifications
•  Precision (optional). The meaning of the precision

depends on the conversion:
 d, i, o, u, x, X: minimum number of digits (leading zeros are
 added if the number has fewer digits)
 a, A, e, E, f, F: number of digits after the decimal point
 g, G: number of significant digits
 s: maximum number of bytes

•  The precision is a period (.) followed by an integer
or the character *.
–  If * is present, the precision is obtained from the next

argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

65

Chapter 22: Input/Output

…printf Conversion Specifications
•  Length modifier (optional). Indicates that the item

to be displayed has a type that’s longer or shorter
than normal.
–  %d normally refers to an int value; %hd is used to

display a short int and %ld is used to display a
long int.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

66

Chapter 22: Input/Output

…printf Conversion Specifications
 Length
 Modifier Conversion Specifiers Meaning
 hh† d, i, o, u, x, X signed char, unsigned char

 n signed char *
 h d, i, o, u, x, X short int, unsigned short int

 n short int *
 l d, i, o, u, x, X long int, unsigned long int
 (ell) n long int *

 c wint_t
 s wchar_t *
 a, A, e, E, f, F, g, G no effect

 †C99 only

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

67

Chapter 22: Input/Output

…printf Conversion Specifications
 Length
 Modifier Conversion Specifiers Meaning
 ll† d, i, o, u, x, X long long int,

 (ell-ell) unsigned long long int
 n long long int *

 j† d, i, o, u, x, X intmax_t, uintmax_t
 n intmax_t *

 z† d, i, o, u, x, X size_t
 n size_t *

 t† d, i, o, u, x, X ptrdiff_t
 n ptrdiff_t *

 L a, A, e, E, f, F, g, G long double
 †C99 only

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

68

Chapter 22: Input/Output

…printf Conversion Specifications
•  Conversion specifier. Must be one of the

characters in the following table.
 Conversion
 Specifier Meaning
 d, i Converts an int value to decimal form.
 o, u, x, X Converts an unsigned int value to base 8 (o), base
 10 (u), or base 16 (x, X). x displays the hexadecimal
 digits a–f in lower case; X displays them in upper case.
 f, F† Converts a double value to decimal form, putting the
 decimal point in the correct position. If no precision is
 specified, displays six digits after the decimal point.

†C99 only

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

69

Chapter 22: Input/Output

…printf Conversion Specifications
 Conversion
 Specifier Meaning
 e, E Converts a double value to scientific notation. If no

 precision is specified, displays six digits after the
 decimal point. If e is chosen, the exponent is preceded
 by the letter e; if E is chosen, the exponent is preceded
 by E.

 g, G g converts a double value to either f form or e form.
 G chooses between F and E forms.

 a†, A† Converts a double value to hexadecimal scientific
 notation using the form [-]0xh.hhhhp±d. a displays
 the hex digits a–f in lower case; A displays them in
 upper case. The choice of a or A also affects the case of
 the letters x and p.

†C99 only

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

70

Chapter 22: Input/Output

…printf Conversion Specifications
 Conversion
 Specifier Meaning
 c Displays an int value as an unsigned character.
 s Writes the characters pointed to by the argument. Stops

 writing when the number of bytes specified by the
 precision (if present) is reached or a null character is
 encountered.

 p Converts a void * value to printable form.
 n The corresponding argument must point to an object of

 type int. Stores in this object the number of characters
 written so far by this call of …printf; produces no
 output.

 % Writes the character %.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

71

Chapter 22: Input/Output

C99 Changes to …printf
Conversion Specifications

•  C99 changes to the conversion specifications for
printf and fprintf:
–  Additional length modifiers
–  Additional conversion specifiers
–  Ability to write infinity and NaN
–  Support for wide characters
–  Previously undefined conversion specifications now

allowed

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

72

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

•  Examples showing the effect of flags on the %d
conversion:

 Conversion Result of Applying Result of Applying
 Specification Conversion to 123 Conversion to –123
 %8d •••••123 ••••-123
 %-8d 123••••• -123••••
 %+8d ••••+123 ••••-123
 % 8d •••••123 ••••-123
 %08d 00000123 -0000123
 %-+8d +123•••• -123••••
 %- 8d •123•••• -123••••
 %+08d +0000123 -0000123
 % 08d •0000123 -0000123

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

73

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

•  Examples showing the effect of the # flag on the o, x,
X, g, and G conversions:

 Conversion Result of Applying Result of Applying
 Specification Conversion to 123 Conversion to 123.0
 %8o •••••173
 %#8o ••••0173
 %8x ••••••7b
 %#8x ••••0x7b
 %8X ••••••7B
 %#8X ••••0X7B
 %8g •••••123
 %#8g •123.000
 %8G •••••123
 %#8G •123.000

 Copyright © 2008 W. W. Norton & Company.
All rights reserved.

74

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

•  Examples showing the effect of the minimum field
width and precision on the %s conversion:

 Result of Applying Result of Applying
 Conversion Conversion to Conversion to
 Specification "bogus" "buzzword"
 %6s •bogus buzzword
 %-6s bogus• buzzword
 %.4s bogu buzz
 %6.4s ••bogu ••buzz
 %-6.4s bogu•• buzz••

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

75

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

•  Examples showing how the %g conversion displays some
numbers in %e form and others in %f form:

 Result of Applying %.4g
 Number Conversion to Number
 123456. 1.235e+05
 12345.6 1.235e+04
 1234.56 1235
 123.456 123.5
 12.3456 12.35
 1.23456 1.235
 .123456 0.1235
 .0123456 0.01235
 .00123456 0.001235
 .000123456 0.0001235
 .0000123456 1.235e-05
 .00000123456 1.235e-06

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

76

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

•  The minimum field width and precision are
usually embedded in the format string.

•  Putting the * character where either number
would normally go allows us to specify it as an
argument after the format string.

•  Calls of printf that produce the same output:
 printf("%6.4d", i);
 printf("%*.4d", 6, i);
 printf("%6.*d", 4, i);
 printf("%*.*d", 6, 4, i);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

77

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

•  A major advantage of * is that it allows us to use a
macro to specify the width or precision:

 printf("%*d", WIDTH, i);

•  The width or precision can even be computed
during program execution:

 printf("%*d", page_width / num_cols,
i);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

78

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

•  The %p conversion is used to print the value of a
pointer:

 printf("%p", (void *) ptr);
 /* displays value of ptr */

•  The pointer is likely to be shown as an octal or
hexadecimal number.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

79

Chapter 22: Input/Output

Examples of …printf
Conversion Specifications

•  The %n conversion is used to find out how many
characters have been printed so far by a call of …
printf.

•  After the following call, the value of len will be
3:

 printf("%d%n\n", 123, &len);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

80

Chapter 22: Input/Output

The …scanf Functions
•  fscanf and scanf read data items from an

input stream, using a format string to indicate the
layout of the input.

•  After the format string, any number of pointers—
each pointing to an object—follow as additional
arguments.

•  Input items are converted (according to conversion
specifications in the format string) and stored in
these objects.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

81

Chapter 22: Input/Output

The …scanf Functions
•  scanf always reads from stdin, whereas
fscanf reads from the stream indicated by its
first argument:

 scanf("%d%d", &i, &j);
 /* reads from stdin */

 fscanf(fp, "%d%d", &i, &j);
 /* reads from fp */

•  A call of scanf is equivalent to a call of
fscanf with stdin as the first argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

82

Chapter 22: Input/Output

The …scanf Functions
•  Errors that cause the …scanf functions to return

prematurely:
–  Input failure (no more input characters could be read)
–  Matching failure (the input characters didn’t match the

format string)

•  In C99, an input failure can also occur because of
an encoding error.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

83

Chapter 22: Input/Output

The …scanf Functions
•  The …scanf functions return the number of data

items that were read and assigned to objects.
•  They return EOF if an input failure occurs before

any data items can be read.
•  Loops that test scanf’s return value are

common.
•  A loop that reads a series of integers one by one,

stopping at the first sign of trouble:
 while (scanf("%d", &i) == 1) {
 …
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

84

Chapter 22: Input/Output

…scanf Format Strings
•  Calls of the …scanf functions resemble those of

the …printf functions.
•  However, the …scanf functions work differently.
•  The format string represents a pattern that a …
scanf function attempts to match as it reads
input.
–  If the input doesn’t match the format string, the

function returns.
–  The input character that didn’t match is “pushed back”

to be read in the future.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

85

Chapter 22: Input/Output

…scanf Format Strings
•  A …scanf format string may contain three

things:
–  Conversion specifications
–  White-space characters
–  Non-white-space characters

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

86

Chapter 22: Input/Output

…scanf Format Strings
•  Conversion specifications. Conversion

specifications in a …scanf format string resemble
those in a …printf format string.

•  Most conversion specifications skip white-space
characters at the beginning of an input item (the
exceptions are %[, %c, and %n).

•  Conversion specifications never skip trailing
white-space characters, however.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

87

Chapter 22: Input/Output

…scanf Format Strings
•  White-space characters. One or more white-space

characters in a format string match zero or more
white-space characters in the input stream.

•  Non-white-space characters. A non-white-space
character other than % matches the same character
in the input stream.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

88

Chapter 22: Input/Output

…scanf Format Strings
•  The format string "ISBN %d-%d-%ld-%d"

specifies that the input will consist of:
–  the letters ISBN
–  possibly some white-space characters
–  an integer
–  the - character
–  an integer (possibly preceded by white-space characters)
–  the - character
–  a long integer (possibly preceded by white-space characters)
–  the - character
–  an integer (possibly preceded by white-space characters)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

89

Chapter 22: Input/Output

…scanf Conversion Specifications
•  A …scanf conversion specification consists of

the character % followed by:
–  *
–  Maximum field width
–  Length modifier
–  Conversion specifier

•  * (optional). Signifies assignment suppression:
an input item is read but not assigned to an object.
–  Items matched using * aren’t included in the count that
…scanf returns.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

90

Chapter 22: Input/Output

…scanf Conversion Specifications
•  Maximum field width (optional). Limits the

number of characters in an input item.
–  White-space characters skipped at the beginning of a

conversion don’t count.

•  Length modifier (optional). Indicates that the
object in which the input item will be stored has a
type that’s longer or shorter than normal.

•  The table on the next slide lists each length
modifier and the type indicated when it is
combined with a conversion specifier.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

91

Chapter 22: Input/Output

…scanf Conversion Specifications
 Length

 Modifier Conversion Specifiers Meaning
 hh† d, i, o, u, x, X, n signed char *, unsigned char *
 h d, i, o, u, x, X, n short int *, unsigned short int *
 l d, i, o, u, x, X, n long int *, unsigned long int *

 (ell) a, A, e, E, f, F, g, G double *
 c, s, or [wchar_t *

 ll† d, i, o, u, x, X, n long long int *,
 (ell-ell) unsigned long long int *
 j† d, i, o, u, x, X, n intmax_t *, uintmax_t *
 z† d, i, o, u, x, X, n size_t *
 t† d, i, o, u, x, X, n ptrdiff_t *
 L a, A, e, E, f, F, g, G long double *

 †C99 only

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

92

Chapter 22: Input/Output

…scanf Conversion Specifications
•  Conversion specifier. Must be one of the

characters in the following table.
 Conversion

 Specifier Meaning
 d Matches a decimal integer; the corresponding argument

 is assumed to have type int *.
 i Matches an integer; the corresponding argument is

 assumed to have type int *. The integer is assumed to
 be in base 10 unless it begins with 0 (indicating octal)
 or with 0x or 0X (hexadecimal).

 o Matches an octal integer; the corresponding argument is
 assumed to have type unsigned int *.

 u Matches a decimal integer; the corresponding argument
 is assumed to have type unsigned int *.

 Copyright © 2008 W. W. Norton & Company.
All rights reserved.

93

Chapter 22: Input/Output

…scanf Conversion Specifications
 Conversion

 Specifier Meaning
 x, X Matches a hexadecimal integer; the corresponding

 argument is assumed to have type unsigned int *.
 a†, A†, e, E, Matches a floating-point number; the corresponding
 f, F†, g, G argument is assumed to have type float *.

 c Matches n characters, where n is the maximum field
 width, or one character if no field width is specified. The
 corresponding argument is assumed to be a pointer to a
 character array (or a character object, if no field width is
 specified). Doesn’t add a null character at the end.

 s Matches a sequence of non-white-space characters, then
 adds a null character at the end. The corresponding
 argument is assumed to be a pointer to a character array.

†C99 only
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

94

Chapter 22: Input/Output

…scanf Conversion Specifications
 Conversion

 Specifier Meaning
 [Matches a nonempty sequence of characters from a

 scanset, then adds a null character at the end. The
 corresponding argument is assumed to be a pointer to a
 character array.

 p Matches a pointer value in the form that …printf
 would have written it. The corresponding argument is
 assumed to be a pointer to a void * object.

 n The corresponding argument must point to an object of
 type int. Stores in this object the number of characters
 read so far by this call of …scanf. No input is consumed
 and the return value of …scanf isn’t affected.

 % Matches the character %.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

95

Chapter 22: Input/Output

…scanf Conversion Specifications
•  Numeric data items can always begin with a sign

(+ or -).
•  The o, u, x, and X specifiers convert the item to

unsigned form, however, so they’re not normally
used to read negative numbers.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

96

Chapter 22: Input/Output

…scanf Conversion Specifications
•  The [specifier is a more complicated (and more

flexible) version of the s specifier.
•  A conversion specification using [has the form %[set]

or %[^set], where set can be any set of characters.
•  %[set] matches any sequence of characters in set (the

scanset).
•  %[^set] matches any sequence of characters not in set.
•  Examples:
 %[abc] matches any string containing only a, b, and c.
 %[^abc] matches any string that doesn’t contain a, b, or c.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

97

Chapter 22: Input/Output

…scanf Conversion Specifications
•  Many of the …scanf conversion specifiers are

closely related to the numeric conversion
functions in <stdlib.h>.

•  These functions convert strings (like "-297") to
their equivalent numeric values (–297).

•  The d specifier, for example, looks for an optional
+ or - sign, followed by decimal digits; this is the
same form that the strtol function requires.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

98

Chapter 22: Input/Output

…scanf Conversion Specifications
•  Correspondence between …scanf conversion

specifiers and numeric conversion functions:
 Conversion
 Specifier Numeric Conversion Function
 d strtol with 10 as the base
 i strtol with 0 as the base
 o strtoul with 8 as the base
 u strtoul with 10 as the base
 x, X strtoul with 16 as the base
 a, A, e, E, f, F, g, G strtod

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

99

Chapter 22: Input/Output

C99 Changes to …scanf
Conversion Specifications

•  C99 changes to the conversion specifications for
scanf and fscanf:
–  Additional length modifiers
–  Additional conversion specifiers
–  Ability to read infinity and NaN
–  Support for wide characters

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

100

Chapter 22: Input/Output

scanf Examples
•  The next three tables contain sample calls of
scanf.

•  Characters printed in strikeout are consumed by
the call.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

101

Chapter 22: Input/Output

scanf Examples
•  Examples that combine conversion specifications, white-

space characters, and non-white-space characters:
 scanf Call Input Variables
n = scanf("%d%d", &i, &j); 12•,•34¤ n: 1
 i: 12
 j: unchanged

n = scanf("%d,%d", &i, &j); 12•,•34¤ n: 1
 i: 12
 j: unchanged

n = scanf("%d ,%d", &i, &j); 12•,•34¤ n: 2
 i: 12
 j: 34

n = scanf("%d, %d", &i, &j); 12•,•34¤ n: 1
 i: 12
 j: unchanged

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

102

Chapter 22: Input/Output

scanf Examples
•  Examples showing the effect of assignment suppression

and specifying a field width:
 scanf Call Input Variables
n = scanf("%*d%d", &i); 12•34¤ n: 1
 i: 34

n = scanf("%*s%s", str); My•Fair•Lady¤ n: 1
 str: "Fair"

n = scanf("%1d%2d%3d", 12345¤ n: 3
 &i, &j, &k); i: 1
 j: 23
 k: 45

n = scanf("%2d%2s%2d", 123456¤ n: 3
 &i, str, &j); i: 12
 str: "34"
 j: 56

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

103

Chapter 22: Input/Output

scanf Examples
•  Examples that illustrate the i, [, and n conversion specifiers:
 scanf Call Input Variables
n = scanf("%i%i%i", &i, &j, &k); 12•012•0x12¤ n: 3
 i: 12
 j: 10
 k: 18

n = scanf("%[0123456789]", str); 123abc¤ n: 1
 str: "123"

n = scanf("%[0123456789]", str); abc123¤ n: 0
 str: unchanged

n = scanf("%[^0123456789]", str); abc123¤ n: 1
 str: "abc"

n = scanf("%*d%d%n", &i, &j); 10•20•30¤ n: 1
 i: 20
 j: 5

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

104

Chapter 22: Input/Output

Detecting End-of-File and Error Conditions

•  If we ask a …scanf function to read and store n
data items, we expect its return value to be n.

•  If the return value is less than n, something went
wrong:
–  End-of-file. The function encountered end-of-file

before matching the format string completely.
–  Read error. The function was unable to read characters

from the stream.
–  Matching failure. A data item was in the wrong format.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

105

Chapter 22: Input/Output

Detecting End-of-File and Error Conditions

•  Every stream has two indicators associated with it:
an error indicator and an end-of-file indicator.

•  These indicators are cleared when the stream is
opened.

•  Encountering end-of-file sets the end-of-file
indicator, and a read error sets the error indicator.
–  The error indicator is also set when a write error occurs

on an output stream.

•  A matching failure doesn’t change either
indicator.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

106

Chapter 22: Input/Output

Detecting End-of-File and Error Conditions

•  Once the error or end-of-file indicator is set, it
remains in that state until it’s explicitly cleared,
perhaps by a call of the clearerr function.

•  clearerr clears both the end-of-file and error
indicators:

 clearerr(fp);
 /* clears eof and error indicators for fp */

•  clearerr isn’t needed often, since some of the
other library functions clear one or both indicators
as a side effect.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

107

Chapter 22: Input/Output

Detecting End-of-File and Error Conditions

•  The feof and ferror functions can be used to
test a stream’s indicators to determine why a prior
operation on the stream failed.

•  The call feof(fp) returns a nonzero value if the
end-of-file indicator is set for the stream
associated with fp.

•  The call ferror(fp) returns a nonzero value if
the error indicator is set.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

108

Chapter 22: Input/Output

Detecting End-of-File and Error Conditions

•  When scanf returns a smaller-than-expected
value, feof and ferror can be used to
determine the reason.
–  If feof returns a nonzero value, the end of the input

file has been reached.
–  If ferror returns a nonzero value, a read error

occurred during input.
–  If neither returns a nonzero value, a matching failure

must have occurred.
•  The return value of scanf indicates how many

data items were read before the problem occurred.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

109

Chapter 22: Input/Output

Detecting End-of-File and Error Conditions

•  The find_int function is an example that
shows how feof and ferror might be used.

•  find_int searches a file for a line that begins
with an integer:

 n = find_int("foo");

•  find_int returns the value of the integer that it
finds or an error code:

 –1 File can’t be opened
 –2 Read error
 –3 No line begins with an integer

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

110

Chapter 22: Input/Output

int find_int(const char *filename)
{
 FILE *fp = fopen(filename, "r");
 int n;

 if (fp == NULL)
 return -1; /* can't open file */

 while (fscanf(fp, "%d", &n) != 1) {
 if (ferror(fp)) {
 fclose(fp);
 return -2; /* read error */
 }
 if (feof(fp)) {
 fclose(fp);
 return -3; /* integer not found */
 }
 fscanf(fp, "%*[^\n]"); /* skips rest of line */
 }

 fclose(fp);
 return n;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

111

Chapter 22: Input/Output

Character I/O
•  The next group of library functions can read and

write single characters.
•  These functions work equally well with text

streams and binary streams.
•  The functions treat characters as values of type
int, not char.

•  One reason is that the input functions indicate an
end-of-file (or error) condition by returning EOF,
which is a negative integer constant.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

112

Chapter 22: Input/Output

Output Functions
•  putchar writes one character to the stdout

stream:
 putchar(ch); /* writes ch to stdout */

•  fputc and putc write a character to an arbitrary
stream:

 fputc(ch, fp); /* writes ch to fp */
 putc(ch, fp); /* writes ch to fp */

•  putc is usually implemented as a macro (as well
as a function), while fputc is implemented only
as a function.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

113

Chapter 22: Input/Output

Output Functions
•  putchar itself is usually a macro:
 #define putchar(c) putc((c), stdout)

•  The C standard allows the putc macro to evaluate
the stream argument more than once, which fputc
isn’t permitted to do.

•  Programmers usually prefer putc, which gives a
faster program.

•  If a write error occurs, all three functions set the
error indicator for the stream and return EOF.

•  Otherwise, they return the character that was written.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

114

Chapter 22: Input/Output

Input Functions
•  getchar reads a character from stdin:
 ch = getchar();

•  fgetc and getc read a character from an arbitrary
stream:

 ch = fgetc(fp);
 ch = getc(fp);

•  All three functions treat the character as an
unsigned char value (which is then converted to
int type before it’s returned).

•  As a result, they never return a negative value other
than EOF.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

115

Chapter 22: Input/Output

Input Functions
•  getc is usually implemented as a macro (as well

as a function), while fgetc is implemented only
as a function.

•  getchar is normally a macro as well:
 #define getchar() getc(stdin)

•  Programmers usually prefer getc over fgetc.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

116

Chapter 22: Input/Output

Input Functions
•  The fgetc, getc, and getchar functions

behave the same if a problem occurs.
•  At end-of-file, they set the stream’s end-of-file

indicator and return EOF.
•  If a read error occurs, they set the stream’s error

indicator and return EOF.
•  To differentiate between the two situations, we

can call either feof or ferror.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

117

Chapter 22: Input/Output

Input Functions
•  One of the most common uses of fgetc, getc,

and getchar is to read characters from a file.
•  A typical while loop for that purpose:
 while ((ch = getc(fp)) != EOF) {
 …
 }

•  Always store the return value in an int variable,
not a char variable.

•  Testing a char variable against EOF may give the
wrong result.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

118

Chapter 22: Input/Output

Input Functions
•  The ungetc function “pushes back” a character

read from a stream and clears the stream’s end-of-
file indicator.

•  A loop that reads a series of digits, stopping at the
first nondigit:

 while (isdigit(ch = getc(fp))) {
 …
 }
 ungetc(ch, fp);
 /* pushes back last character read */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

119

Chapter 22: Input/Output

Input Functions
•  The number of characters that can be pushed back

by consecutive calls of ungetc varies; only the
first call is guaranteed to succeed.

•  Calling a file-positioning function (fseek,
fsetpos, or rewind) causes the pushed-back
characters to be lost.

•  ungetc returns the character it was asked to push
back.
–  It returns EOF if an attempt is made to push back EOF

or to push back more characters than allowed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

120

Chapter 22: Input/Output

Program: Copying a File
•  The fcopy.c program makes a copy of a file.
•  The names of the original file and the new file will

be specified on the command line when the
program is executed.

•  An example that uses fcopy to copy the file
f1.c to f2.c:

 fcopy f1.c f2.c

•  fcopy will issue an error message if there aren’t
exactly two file names on the command line or if
either file can’t be opened.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

121

Chapter 22: Input/Output

Program: Copying a File
•  Using "rb" and "wb" as the file modes enables
fcopy to copy both text and binary files.

•  If we used "r" and "w" instead, the program
wouldn’t necessarily be able to copy binary files.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

122

Chapter 22: Input/Output

fcopy.c

/* Copies a file */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *source_fp, *dest_fp;
 int ch;

 if (argc != 3) {
 fprintf(stderr, "usage: fcopy source dest\n");
 exit(EXIT_FAILURE);
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

123

Chapter 22: Input/Output

 if ((source_fp = fopen(argv[1], "rb")) == NULL) {
 fprintf(stderr, "Can't open %s\n", argv[1]);
 exit(EXIT_FAILURE);
 }

 if ((dest_fp = fopen(argv[2], "wb")) == NULL) {
 fprintf(stderr, "Can't open %s\n", argv[2]);
 fclose(source_fp);
 exit(EXIT_FAILURE);
 }

 while ((ch = getc(source_fp)) != EOF)
 putc(ch, dest_fp);

 fclose(source_fp);
 fclose(dest_fp);
 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

124

Chapter 22: Input/Output

Line I/O
•  Library functions in the next group are able to

read and write lines.
•  These functions are used mostly with text streams,

although it’s legal to use them with binary streams
as well.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

125

Chapter 22: Input/Output

Output Functions
•  The puts function writes a string of characters to
stdout:

 puts("Hi, there!"); /* writes to stdout */

•  After it writes the characters in the string, puts
always adds a new-line character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

126

Chapter 22: Input/Output

Output Functions
•  fputs is a more general version of puts.
•  Its second argument indicates the stream to which

the output should be written:
 fputs("Hi, there!", fp); /* writes to fp */

•  Unlike puts, the fputs function doesn’t write a
new-line character unless one is present in the
string.

•  Both functions return EOF if a write error occurs;
otherwise, they return a nonnegative number.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

127

Chapter 22: Input/Output

Input Functions
•  The gets function reads a line of input from
stdin:

 gets(str); /* reads a line from stdin */

•  gets reads characters one by one, storing them in
the array pointed to by str, until it reads a new-
line character (which it discards).

•  fgets is a more general version of gets that can
read from any stream.

•  fgets is also safer than gets, since it limits the
number of characters that it will store.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

128

Chapter 22: Input/Output

Input Functions
•  A call of fgets that reads a line into a character

array named str:
 fgets(str, sizeof(str), fp);

•  fgets will read characters until it reaches the
first new-line character or sizeof(str) – 1
characters have been read.

•  If it reads the new-line character, fgets stores it
along with the other characters.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

129

Chapter 22: Input/Output

Input Functions
•  Both gets and fgets return a null pointer if a

read error occurs or they reach the end of the input
stream before storing any characters.

•  Otherwise, both return their first argument, which
points to the array in which the input was stored.

•  Both functions store a null character at the end of
the string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

130

Chapter 22: Input/Output

Input Functions
•  fgets should be used instead of gets in most

situations.
•  gets is safe to use only when the string being

read is guaranteed to fit into the array.
•  When there’s no guarantee (and there usually

isn’t), it’s much safer to use fgets.
•  fgets will read from the standard input stream if

passed stdin as its third argument:
 fgets(str, sizeof(str), stdin);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

131

Chapter 22: Input/Output

Block I/O
•  The fread and fwrite functions allow a

program to read and write large blocks of data in a
single step.

•  fread and fwrite are used primarily with
binary streams, although—with care—it’s
possible to use them with text streams as well.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

132

Chapter 22: Input/Output

Block I/O
•  fwrite is designed to copy an array from memory

to a stream.
•  Arguments in a call of fwrite:

–  Address of array
–  Size of each array element (in bytes)
–  Number of elements to write
–  File pointer

•  A call of fwrite that writes the entire contents of
the array a:

 fwrite(a, sizeof(a[0]),
 sizeof(a) / sizeof(a[0]), fp);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

133

Chapter 22: Input/Output

Block I/O
•  fwrite returns the number of elements actually

written.
•  This number will be less than the third argument if

a write error occurs.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

134

Chapter 22: Input/Output

Block I/O
•  fread will read the elements of an array from a

stream.
•  A call of fread that reads the contents of a file into

the array a:
 n = fread(a, sizeof(a[0]),
 sizeof(a) / sizeof(a[0]), fp);

•  fread’s return value indicates the actual number
of elements read.

•  This number should equal the third argument unless
the end of the input file was reached or a read error
occurred.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

135

Chapter 22: Input/Output

Block I/O
•  fwrite is convenient for a program that needs to

store data in a file before terminating.
•  Later, the program (or another program) can use
fread to read the data back into memory.

•  The data doesn’t need to be in array form.
•  A call of fwrite that writes a structure variable
s to a file:

 fwrite(&s, sizeof(s), 1, fp);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

136

Chapter 22: Input/Output

File Positioning
•  Every stream has an associated file position.
•  When a file is opened, the file position is set at the

beginning of the file.
–  In “append” mode, the initial file position may be at the

beginning or end, depending on the implementation.
•  When a read or write operation is performed, the

file position advances automatically, providing
sequential access to data.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

137

Chapter 22: Input/Output

File Positioning
•  Although sequential access is fine for many

applications, some programs need the ability to
jump around within a file.

•  If a file contains a series of records, we might
want to jump directly to a particular record.

•  <stdio.h> provides five functions that allow a
program to determine the current file position or to
change it.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

138

Chapter 22: Input/Output

File Positioning
•  The fseek function changes the file position

associated with the first argument (a file pointer).
•  The third argument is one of three macros:
 SEEK_SET Beginning of file
 SEEK_CUR Current file position
 SEEK_END End of file

•  The second argument, which has type long int,
is a (possibly negative) byte count.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

139

Chapter 22: Input/Output

File Positioning
•  Using fseek to move to the beginning of a file:
 fseek(fp, 0L, SEEK_SET);

•  Using fseek to move to the end of a file:
 fseek(fp, 0L, SEEK_END);

•  Using fseek to move back 10 bytes:
 fseek(fp, -10L, SEEK_CUR);

•  If an error occurs (the requested position doesn’t
exist, for example), fseek returns a nonzero
value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

140

Chapter 22: Input/Output

File Positioning
•  The file-positioning functions are best used with

binary streams.
•  C doesn’t prohibit programs from using them with

text streams, but certain restrictions apply.
•  For text streams, fseek can be used only to move

to the beginning or end of a text stream or to
return to a place that was visited previously.

•  For binary streams, fseek isn’t required to
support calls in which the third argument is
SEEK_END.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

141

Chapter 22: Input/Output

File Positioning
•  The ftell function returns the current file

position as a long integer.
•  The value returned by ftell may be saved and

later supplied to a call of fseek:
 long file_pos;
 …
 file_pos = ftell(fp);
 /* saves current position */
 …
 fseek(fp, file_pos, SEEK_SET);
 /* returns to old position */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

142

Chapter 22: Input/Output

File Positioning
•  If fp is a binary stream, the call ftell(fp)

returns the current file position as a byte count,
where zero represents the beginning of the file.

•  If fp is a text stream, ftell(fp) isn’t
necessarily a byte count.

•  As a result, it’s best not to perform arithmetic on
values returned by ftell.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

143

Chapter 22: Input/Output

File Positioning
•  The rewind function sets the file position at the

beginning.
•  The call rewind(fp) is nearly equivalent to
fseek(fp, 0L, SEEK_SET).
–  The difference? rewind doesn’t return a value but

does clear the error indicator for fp.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

144

Chapter 22: Input/Output

File Positioning
•  fseek and ftell are limited to files whose

positions can be stored in a long integer.
•  For working with very large files, C provides two

additional functions: fgetpos and fsetpos.
•  These functions can handle large files because

they use values of type fpos_t to represent file
positions.
–  An fpos_t value isn’t necessarily an integer; it could

be a structure, for instance.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

145

Chapter 22: Input/Output

File Positioning
•  The call fgetpos(fp, &file_pos) stores

the file position associated with fp in the
file_pos variable.

•  The call fsetpos(fp, &file_pos) sets the
file position for fp to be the value stored in
file_pos.

•  If a call of fgetpos or fsetpos fails, it stores
an error code in errno.

•  Both functions return zero when they succeed and
a nonzero value when they fail.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

146

Chapter 22: Input/Output

File Positioning
•  An example that uses fgetpos and fsetpos to

save a file position and return to it later:
 fpos_t file_pos;
 …
 fgetpos(fp, &file_pos);
 /* saves current position */
 …
 fsetpos(fp, &file_pos);
 /* returns to old position */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

147

Chapter 22: Input/Output

Program: Modifying a File of Part Records
•  Actions performed by the invclear.c

program:
–  Opens a binary file containing part structures.
–  Reads the structures into an array.
–  Sets the on_hand member of each structure to 0.
–  Writes the structures back to the file.

•  The program opens the file in "rb+" mode,
allowing both reading and writing.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

148

Chapter 22: Input/Output

invclear.c

/* Modifies a file of part records by setting the quantity
 on hand to zero for all records */

#include <stdio.h>
#include <stdlib.h>

#define NAME_LEN 25
#define MAX_PARTS 100

struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} inventory[MAX_PARTS];

int num_parts;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

149

Chapter 22: Input/Output

int main(void)
{
 FILE *fp;
 int i;

 if ((fp = fopen("inventory.dat", "rb+")) == NULL) {
 fprintf(stderr, "Can't open inventory file\n");
 exit(EXIT_FAILURE);
 }

 num_parts = fread(inventory, sizeof(struct part),
 MAX_PARTS, fp);

 for (i = 0; i < num_parts; i++)
 inventory[i].on_hand = 0;

 rewind(fp);
 fwrite(inventory, sizeof(struct part), num_parts, fp);
 fclose(fp);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

150

Chapter 22: Input/Output

String I/O
•  The functions described in this section can read

and write data using a string as though it were a
stream.

•  sprintf and snprintf write characters into a
string.

•  sscanf reads characters from a string.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

151

Chapter 22: Input/Output

String I/O
•  Three similar functions (vsprintf,
vsnprintf, and vsscanf) also belong to
<stdio.h>.

•  These functions rely on the va_list type, which
is declared in <stdarg.h>, so they are
discussed in Chapter 26.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

152

Chapter 22: Input/Output

Output Functions
•  The sprintf function writes output into a

character array (pointed to by its first argument)
instead of a stream.

•  A call that writes "9/20/2010" into date:
 sprintf(date, "%d/%d/%d", 9, 20, 2010);
•  sprintf adds a null character at the end of the

string.
•  It returns the number of characters stored (not

counting the null character).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

153

Chapter 22: Input/Output

Output Functions
•  sprintf can be used to format data, with the

result saved in a string until it’s time to produce
output.

•  sprintf is also convenient for converting
numbers to character form.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

154

Chapter 22: Input/Output

Output Functions
•  The snprintf function (new in C99) is the same

as sprintf, except for an additional second
parameter named n.

•  No more than n – 1 characters will be written to
the string, not counting the terminating null
character, which is always written unless n is zero.

•  Example:
 snprintf(name, 13, "%s, %s", "Einstein", "Albert");

 The string "Einstein, Al" is written into
name.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

155

Chapter 22: Input/Output

Output Functions
•  snprintf returns the number of characters that

would have been written (not including the null
character) had there been no length restriction.

•  If an encoding error occurs, snprintf returns a
negative number.

•  To see if snprintf had room to write all the
requested characters, we can test whether its return
value was nonnegative and less than n.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

156

Chapter 22: Input/Output

Input Functions
•  The sscanf function is similar to scanf and
fscanf.

•  sscanf reads from a string (pointed to by its first
argument) instead of reading from a stream.

•  sscanf’s second argument is a format string
identical to that used by scanf and fscanf.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

157

Chapter 22: Input/Output

Input Functions
•  sscanf is handy for extracting data from a string

that was read by another input function.
•  An example that uses fgets to obtain a line of

input, then passes the line to sscanf for further
processing:

 fgets(str, sizeof(str), stdin);
 /* reads a line of input */
 sscanf(str, "%d%d", &i, &j);
 /* extracts two integers */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

158

Chapter 22: Input/Output

Input Functions
•  One advantage of using sscanf is that we can examine

an input line as many times as needed.
•  This makes it easier to recognize alternate input forms and

to recover from errors.
•  Consider the problem of reading a date that’s written

either in the form month/day/year or month-day-year:
if (sscanf(str, "%d /%d /%d", &month, &day, &year) == 3)
 printf("Month: %d, day: %d, year: %d\n", month, day, year);
else if (sscanf(str, "%d -%d -%d", &month, &day, &year) == 3)
 printf("Month: %d, day: %d, year: %d\n", month, day, year);
else
 printf("Date not in the proper form\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

159

Chapter 22: Input/Output

Input Functions
•  Like the scanf and fscanf functions, sscanf

returns the number of data items successfully read
and stored.

•  sscanf returns EOF if it reaches the end of the
string (marked by a null character) before finding
the first item.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

160

