
Chapter 2: C Fundamentals

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 2

C Fundamentals

Chapter 2: C Fundamentals

Program: Printing a Pun
#include <stdio.h>

int main(void)
{
 printf("To C, or not to C: that is the question.\n");
 return 0;
}

•  This program might be stored in a file named pun.c.
•  The file name doesn’t matter, but the .c extension is

often required.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 2: C Fundamentals

Compiling and Linking
•  Before a program can be executed, three steps are

usually necessary:
–  Preprocessing. The preprocessor obeys commands that

begin with # (known as directives)
–  Compiling. A compiler translates then translates the

program into machine instructions (object code).
–  Linking. A linker combines the object code produced

by the compiler with any additional code needed to
yield a complete executable program.

•  The preprocessor is usually integrated with the
compiler.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 2: C Fundamentals

Compiling and Linking Using cc
•  To compile and link the pun.c program under

UNIX, enter the following command in a terminal
or command-line window:

 % cc pun.c

 The % character is the UNIX prompt.
•  Linking is automatic when using cc; no separate

link command is necessary.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 2: C Fundamentals

Compiling and Linking Using cc
•  After compiling and linking the program, cc

leaves the executable program in a file named
a.out by default.

•  The -o option lets us choose the name of the file
containing the executable program.

•  The following command causes the executable
version of pun.c to be named pun:

 % cc -o pun pun.c

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 2: C Fundamentals

The GCC Compiler
•  GCC is one of the most popular C compilers.
•  GCC is supplied with Linux but is available for

many other platforms as well.
•  Using this compiler is similar to using cc:
 % gcc -o pun pun.c

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 2: C Fundamentals

Integrated Development Environments
•  An integrated development environment (IDE) is

a software package that makes it possible to edit,
compile, link, execute, and debug a program
without leaving the environment.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 2: C Fundamentals

The General Form of a Simple Program
•  Simple C programs have the form

 directives

 int main(void)
 {
 statements
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 2: C Fundamentals

The General Form of a Simple Program
•  C uses { and } in much the same way that some

other languages use words like begin and end.
•  Even the simplest C programs rely on three key

language features:
–  Directives
–  Functions
–  Statements

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 2: C Fundamentals

Directives
•  Before a C program is compiled, it is first edited

by a preprocessor.
•  Commands intended for the preprocessor are

called directives.
•  Example:
 #include <stdio.h>
•  <stdio.h> is a header containing information

about C’s standard I/O library.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 2: C Fundamentals

Directives
•  Directives always begin with a # character.
•  By default, directives are one line long; there’s no

semicolon or other special marker at the end.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 2: C Fundamentals

Functions
•  A function is a series of statements that have been

grouped together and given a name.
•  Library functions are provided as part of the C

implementation.
•  A function that computes a value uses a return

statement to specify what value it “returns”:
 return x + 1;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 2: C Fundamentals

The main Function
•  The main function is mandatory.
•  main is special: it gets called automatically when

the program is executed.
•  main returns a status code; the value 0 indicates

normal program termination.
•  If there’s no return statement at the end of the
main function, many compilers will produce a
warning message.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 2: C Fundamentals

Statements
•  A statement is a command to be executed when

the program runs.
•  pun.c uses only two kinds of statements. One is

the return statement; the other is the function
call.

•  Asking a function to perform its assigned task is
known as calling the function.

•  pun.c calls printf to display a string:
 printf("To C, or not to C: that is the question.
\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 2: C Fundamentals

Statements
•  C requires that each statement end with a

semicolon.
–  There’s one exception: the compound statement.

•  Directives are normally one line long, and they
don’t end with a semicolon.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 2: C Fundamentals

Printing Strings
•  When the printf function displays a string

literal—characters enclosed in double quotation
marks—it doesn’t show the quotation marks.

•  printf doesn’t automatically advance to the
next output line when it finishes printing.

•  To make printf advance one line, include \n
(the new-line character) in the string to be
printed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 2: C Fundamentals

Printing Strings
•  The statement
 printf("To C, or not to C: that is the question.\n");

 could be replaced by two calls of printf:
 printf("To C, or not to C: ");
 printf("that is the question.\n");

•  The new-line character can appear more than once in a
string literal:

 printf("Brevity is the soul of wit.\n --Shakespeare
\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 2: C Fundamentals

Comments
•  A comment begins with /* and end with */.

 /* This is a comment */
•  Comments may appear almost anywhere in a

program, either on separate lines or on the same
lines as other program text.

•  Comments may extend over more than one line.
 /* Name: pun.c
 Purpose: Prints a bad pun.
 Author: K. N. King */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 2: C Fundamentals

Comments
•  Warning: Forgetting to terminate a comment may cause

the compiler to ignore part of your program:
 printf("My "); /* forgot to close this comment...
 printf("cat ");
 printf("has "); /* so it ends here */
 printf("fleas");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 2: C Fundamentals

Comments in C99
•  In C99, comments can also be written in the

following way:
 // This is a comment

•  This style of comment ends automatically at the
end of a line.

•  Advantages of // comments:
–  Safer: there’s no chance that an unterminated comment

will accidentally consume part of a program.
–  Multiline comments stand out better.

 Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 2: C Fundamentals

Variables and Assignment
•  Most programs need to a way to store data

temporarily during program execution.
•  These storage locations are called variables.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 2: C Fundamentals

Types
•  Every variable must have a type.
•  C has a wide variety of types, including int and
float.

•  A variable of type int (short for integer) can
store a whole number such as 0, 1, 392, or –2553.
–  The largest int value is typically 2,147,483,647 but

can be as small as 32,767.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 2: C Fundamentals

Types
•  A variable of type float (short for floating-

point) can store much larger numbers than an int
variable.

•  Also, a float variable can store numbers with
digits after the decimal point, like 379.125.

•  Drawbacks of float variables:
–  Slower arithmetic
–  Approximate nature of float values

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 2: C Fundamentals

Declarations
•  Variables must be declared before they are used.
•  Variables can be declared one at a time:

 int height;
 float profit;

•  Alternatively, several can be declared at the same
time:

 int height, length, width, volume;
 float profit, loss;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 2: C Fundamentals

Declarations
•  When main contains declarations, these must

precede statements:
 int main(void)
 {
 declarations
 statements
 }

•  In C99, declarations don’t have to come before
statements.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 2: C Fundamentals

Assignment
•  A variable can be given a value by means of

assignment:
 height = 8;

 The number 8 is said to be a constant.
•  Before a variable can be assigned a value—or

used in any other way—it must first be declared.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 2: C Fundamentals

Assignment
•  A constant assigned to a float variable usually

contains a decimal point:
 profit = 2150.48;

•  It’s best to append the letter f to a floating-point
constant if it is assigned to a float variable:

 profit = 2150.48f;

 Failing to include the f may cause a warning from
the compiler.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 2: C Fundamentals

Assignment
•  An int variable is normally assigned a value of

type int, and a float variable is normally
assigned a value of type float.

•  Mixing types (such as assigning an int value to a
float variable or assigning a float value to an
int variable) is possible but not always safe.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 2: C Fundamentals

Assignment
•  Once a variable has been assigned a value, it can

be used to help compute the value of another
variable:

 height = 8;
 length = 12;
 width = 10;
 volume = height * length * width;
 /* volume is now 960 */

•  The right side of an assignment can be a formula
(or expression, in C terminology) involving
constants, variables, and operators.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 2: C Fundamentals

Printing the Value of a Variable
•  printf can be used to display the current value

of a variable.
•  To write the message
 Height: h
 where h is the current value of the height
variable, we’d use the following call of printf:

 printf("Height: %d\n", height);

•  %d is a placeholder indicating where the value of
height is to be filled in.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 2: C Fundamentals

Printing the Value of a Variable
•  %d works only for int variables; to print a
float variable, use %f instead.

•  By default, %f displays a number with six digits
after the decimal point.

•  To force %f to display p digits after the decimal
point, put .p between % and f.

•  To print the line
 Profit: $2150.48

 use the following call of printf:
 printf("Profit: $%.2f\n", profit);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 2: C Fundamentals

Printing the Value of a Variable
•  There’s no limit to the number of variables that can

be printed by a single call of printf:
 printf("Height: %d Length: %d\n", height, length);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 2: C Fundamentals

Program: Computing the
Dimensional Weight of a Box

•  Shipping companies often charge extra for boxes that
are large but very light, basing the fee on volume
instead of weight.

•  The usual method to compute the “dimensional
weight” is to divide the volume by 166 (the allowable
number of cubic inches per pound).

•  The dweight.c program computes the dimensional
weight of a particular box:

 Dimensions: 12x10x8
 Volume (cubic inches): 960
 Dimensional weight (pounds): 6

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 2: C Fundamentals

Program: Computing the
Dimensional Weight of a Box

•  Division is represented by / in C, so the obvious way
to compute the dimensional weight would be

 weight = volume / 166;

•  In C, however, when one integer is divided by
another, the answer is “truncated”: all digits after the
decimal point are lost.
–  The volume of a 12” × 10” × 8” box will be 960 cubic

inches.
–  Dividing by 166 gives 5 instead of 5.783.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 2: C Fundamentals

Program: Computing the
Dimensional Weight of a Box

•  One solution is to add 165 to the volume before
dividing by 166:

 weight = (volume + 165) / 166;

•  A volume of 166 would give a weight of 331/166,
or 1, while a volume of 167 would yield 332/166,
or 2.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 2: C Fundamentals

dweight.c

/* Computes the dimensional weight of a 12" x 10" x 8" box */

#include <stdio.h>

int main(void)
{
 int height, length, width, volume, weight;

 height = 8;
 length = 12;
 width = 10;
 volume = height * length * width;
 weight = (volume + 165) / 166;

 printf("Dimensions: %dx%dx%d\n", length, width, height);
 printf("Volume (cubic inches): %d\n", volume);
 printf("Dimensional weight (pounds): %d\n", weight);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 2: C Fundamentals

Initialization
•  Some variables are automatically set to zero when

a program begins to execute, but most are not.
•  A variable that doesn’t have a default value and

hasn’t yet been assigned a value by the program is
said to be uninitialized.

•  Attempting to access the value of an uninitialized
variable may yield an unpredictable result.

•  With some compilers, worse behavior—even a
program crash—may occur.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 2: C Fundamentals

Initialization
•  The initial value of a variable may be included in

its declaration:
 int height = 8;

 The value 8 is said to be an initializer.
•  Any number of variables can be initialized in the

same declaration:
 int height = 8, length = 12, width = 10;

•  Each variable requires its own initializer.
 int height, length, width = 10;
 /* initializes only width */

 Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 2: C Fundamentals

Printing Expressions
•  printf can display the value of any numeric

expression.
•  The statements
 volume = height * length * width;
 printf("%d\n", volume);

 could be replaced by
 printf("%d\n", height * length * width);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 2: C Fundamentals

Reading Input
•  scanf is the C library’s counterpart to printf.
•  scanf requires a format string to specify the

appearance of the input data.
•  Example of using scanf to read an int value:
 scanf("%d", &i);
 /* reads an integer; stores into i */

•  The & symbol is usually (but not always) required
when using scanf.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 2: C Fundamentals

Reading Input
•  Reading a float value requires a slightly

different call of scanf:
 scanf("%f", &x);

•  "%f" tells scanf to look for an input value in
float format (the number may contain a decimal
point, but doesn’t have to).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 2: C Fundamentals

Program: Computing the Dimensional
Weight of a Box (Revisited)

•  dweight2.c is an improved version of the
dimensional weight program in which the user
enters the dimensions.

•  Each call of scanf is immediately preceded by a
call of printf that displays a prompt.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 2: C Fundamentals

dweight2.c

/* Computes the dimensional weight of a box from input provided by the user */

#include <stdio.h>

int main(void)
{
 int height, length, width, volume, weight;

 printf("Enter height of box: ");
 scanf("%d", &height);
 printf("Enter length of box: ");
 scanf("%d", &length);
 printf("Enter width of box: ");
 scanf("%d", &width);
 volume = height * length * width;
 weight = (volume + 165) / 166;

 printf("Volume (cubic inches): %d\n", volume);
 printf("Dimensional weight (pounds): %d\n", weight);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 2: C Fundamentals

Program: Computing the Dimensional
Weight of a Box (Revisited)

•  Sample output of program:
 Enter height of box: 8
 Enter length of box: 12
 Enter width of box: 10
 Volume (cubic inches): 960
 Dimensional weight (pounds): 6

•  Note that a prompt shouldn’t end with a new-line
character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 2: C Fundamentals

Defining Names for Constants
•  dweight.c and dweight2.c rely on the

constant 166, whose meaning may not be clear to
someone reading the program.

•  Using a feature known as macro definition, we
can name this constant:

 #define INCHES_PER_POUND 166

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 2: C Fundamentals

Defining Names for Constants
•  When a program is compiled, the preprocessor replaces

each macro by the value that it represents.
•  During preprocessing, the statement
 weight = (volume + INCHES_PER_POUND - 1) / INCHES_PER_POUND;

 will become
 weight = (volume + 166 - 1) / 166;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 2: C Fundamentals

Defining Names for Constants
•  The value of a macro can be an expression:
 #define RECIPROCAL_OF_PI (1.0f / 3.14159f)

•  If it contains operators, the expression should be
enclosed in parentheses.

•  Using only upper-case letters in macro names is a
common convention.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 2: C Fundamentals

Program: Converting from
Fahrenheit to Celsius

•  The celsius.c program prompts the user to
enter a Fahrenheit temperature; it then prints the
equivalent Celsius temperature.

•  Sample program output:
 Enter Fahrenheit temperature: 212
 Celsius equivalent: 100.0

•  The program will allow temperatures that aren’t
integers.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 2: C Fundamentals

celsius.c

/* Converts a Fahrenheit temperature to Celsius */

#include <stdio.h>

#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f / 9.0f)

int main(void)
{
 float fahrenheit, celsius;

 printf("Enter Fahrenheit temperature: ");
 scanf("%f", &fahrenheit);

 celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR;

 printf("Celsius equivalent: %.1f\n", celsius);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 2: C Fundamentals

Program: Converting from
Fahrenheit to Celsius

•  Defining SCALE_FACTOR to be (5.0f / 9.0f)
instead of (5 / 9) is important.

•  Note the use of %.1f to display celsius with
just one digit after the decimal point.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 2: C Fundamentals

Identifiers
•  Names for variables, functions, macros, and other

entities are called identifiers.
•  An identifier may contain letters, digits, and

underscores, but must begin with a letter or
underscore:

 times10 get_next_char _done

 It’s usually best to avoid identifiers that begin
with an underscore.

•  Examples of illegal identifiers:
 10times get-next-char

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 2: C Fundamentals

Identifiers
•  C is case-sensitive: it distinguishes between

upper-case and lower-case letters in identifiers.
•  For example, the following identifiers are all

different:
 job joB jOb jOB Job JoB JOb JOB

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 2: C Fundamentals

Identifiers
•  Many programmers use only lower-case letters in

identifiers (other than macros), with underscores
inserted for legibility:

 symbol_table current_page name_and_address

•  Other programmers use an upper-case letter to
begin each word within an identifier:

 symbolTable currentPage nameAndAddress
•  C places no limit on the maximum length of an

identifier.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 2: C Fundamentals

Keywords
•  The following keywords can’t be used as

identifiers:
 auto enum restrict* unsigned
 break extern return void
 case float short volatile
 char for signed while
 const goto sizeof _Bool*
 continue if static _Complex*
 default inline* struct _Imaginary*
 do int switch
 double long typedef
 else register union

 *C99 only

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 2: C Fundamentals

Keywords
•  Keywords (with the exception of _Bool,
_Complex, and _Imaginary) must be written
using only lower-case letters.

•  Names of library functions (e.g., printf) are
also lower-case.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 2: C Fundamentals

Layout of a C Program
•  A C program is a series of tokens.
•  Tokens include:

–  Identifiers
–  Keywords
–  Operators
–  Punctuation
–  Constants
–  String literals

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

Chapter 2: C Fundamentals

Layout of a C Program
•  The statement

 printf("Height: %d\n", height);
 consists of seven tokens:
 printf Identifier
 (Punctuation
 "Height: %d\n" String literal
 , Punctuation
 height Identifier
) Punctuation
 ; Punctuation

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 2: C Fundamentals

Layout of a C Program
•  The amount of space between tokens usually isn’t critical.
•  At one extreme, tokens can be crammed together with no

space between them, except where this would cause two
tokens to merge:

/* Converts a Fahrenheit temperature to Celsius */
#include <stdio.h>
#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f/9.0f)
int main(void){float fahrenheit,celsius;printf(
"Enter Fahrenheit temperature: ");scanf("%f", &fahrenheit);
celsius=(fahrenheit-FREEZING_PT)*SCALE_FACTOR;
printf("Celsius equivalent: %.1f\n", celsius);return 0;}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 2: C Fundamentals

Layout of a C Program
•  The whole program can’t be put on one line,

because each preprocessing directive requires a
separate line.

•  Compressing programs in this fashion isn’t a good
idea.

•  In fact, adding spaces and blank lines to a program
can make it easier to read and understand.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 2: C Fundamentals

Layout of a C Program
•  C allows any amount of space—blanks, tabs, and

new-line characters—between tokens.
•  Consequences for program layout:

–  Statements can be divided over any number of lines.
–  Space between tokens (such as before and after each

operator, and after each comma) makes it easier for the
eye to separate them.

–  Indentation can make nesting easier to spot.
–  Blank lines can divide a program into logical units.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

60

Chapter 2: C Fundamentals

Layout of a C Program
•  Although extra spaces can be added between

tokens, it’s not possible to add space within a token
without changing the meaning of the program or
causing an error.

•  Writing
 fl oat fahrenheit, celsius; /*** WRONG ***/

 or
 fl
 oat fahrenheit, celsius; /*** WRONG ***/

 produces an error when the program is compiled.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

61

Chapter 2: C Fundamentals

Layout of a C Program
•  Putting a space inside a string literal is allowed,

although it changes the meaning of the string.
•  Putting a new-line character in a string (splitting

the string over two lines) is illegal:
 printf("To C, or not to C:
 that is the question.\n");
 /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

62

