
Chapter 3: Formatted Input/Output

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 3

Formatted Input/Output

Chapter 3: Formatted Input/Output

The printf Function
•  The printf function must be supplied with a format

string, followed by any values that are to be inserted
into the string during printing:

 printf(string, expr1, expr2, …);
•  The format string may contain both ordinary

characters and conversion specifications, which begin
with the % character.

•  A conversion specification is a placeholder
representing a value to be filled in during printing.
–  %d is used for int values
–  %f is used for float values

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 3: Formatted Input/Output

The printf Function
•  Ordinary characters in a format string are printed as they

appear in the string; conversion specifications are replaced.
•  Example:

 int i, j;
 float x, y;

 i = 10;
 j = 20;
 x = 43.2892f;
 y = 5527.0f;

 printf("i = %d, j = %d, x = %f, y = %f\n", i, j, x, y);

•  Output:
 i = 10, j = 20, x = 43.289200, y = 5527.000000

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 3: Formatted Input/Output

The printf Function
•  Compilers aren’t required to check that the

number of conversion specifications in a format
string matches the number of output items.

•  Too many conversion specifications:
 printf("%d %d\n", i); /*** WRONG ***/

•  Too few conversion specifications:
 printf("%d\n", i, j); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 3: Formatted Input/Output

The printf Function
•  Compilers aren’t required to check that a

conversion specification is appropriate.
•  If the programmer uses an incorrect specification,

the program will produce meaningless output:
 printf("%f %d\n", i, x); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 3: Formatted Input/Output

Conversion Specifications
•  A conversion specification can have the form %m.pX

or %-m.pX, where m and p are integer constants and
X is a letter.

•  Both m and p are optional; if p is omitted, the period
that separates m and p is also dropped.

•  In the conversion specification %10.2f, m is 10, p is
2, and X is f.

•  In the specification %10f, m is 10 and p (along with
the period) is missing, but in the specification %.2f, p
is 2 and m is missing.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 3: Formatted Input/Output

Conversion Specifications
•  The minimum field width, m, specifies the minimum

number of characters to print.
•  If the value to be printed requires fewer than m characters,

it is right-justified within the field.
–  %4d displays the number 123 as •123. (• represents the

space character.)
•  If the value to be printed requires more than m characters,

the field width automatically expands to the necessary size.
•  Putting a minus sign in front of m causes left justification.

–  The specification %-4d would display 123 as 123•.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 3: Formatted Input/Output

Conversion Specifications
•  The meaning of the precision, p, depends on the

choice of X, the conversion specifier.
•  The d specifier is used to display an integer in

decimal form.
–  p indicates the minimum number of digits to display

(extra zeros are added to the beginning of the number if
necessary).

–  If p is omitted, it is assumed to be 1.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 3: Formatted Input/Output

Conversion Specifications
•  Conversion specifiers for floating-point numbers:
 e — Exponential format. p indicates how many digits

should appear after the decimal point (the default is 6). If p
is 0, no decimal point is displayed.

 f — “Fixed decimal” format. p has the same meaning as
for the e specifier.

 g — Either exponential format or fixed decimal format,
depending on the number’s size. p indicates the maximum
number of significant digits to be displayed. The g
conversion won’t show trailing zeros. If the number has no
digits after the decimal point, g doesn’t display the
decimal point.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 3: Formatted Input/Output

Program: Using printf to Format Numbers

•  The tprintf.c program uses printf to
display integers and floating-point numbers in
various formats.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 3: Formatted Input/Output

 tprintf.c

 /* Prints int and float values in various formats */

 #include <stdio.h>

 int main(void)
 {
 int i;
 float x;

 i = 40;
 x = 839.21f;

 printf("|%d|%5d|%-5d|%5.3d|\n", i, i, i, i);
 printf("|%10.3f|%10.3e|%-10g|\n", x, x, x);

 return 0;
 }

•  Output:
 |40| 40|40 | 040|
 | 839.210| 8.392e+02|839.21 |

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 3: Formatted Input/Output

Escape Sequences
•  The \n code that used in format strings is called

an escape sequence.
•  Escape sequences enable strings to contain

nonprinting (control) characters and characters
that have a special meaning (such as ").

•  A partial list of escape sequences:
Alert (bell) \a
Backspace \b
New line \n
Horizontal tab \t

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 3: Formatted Input/Output

Escape Sequences
•  A string may contain any number of escape

sequences:
 printf("Item\tUnit\tPurchase\n\tPrice\tDate\n");

•  Executing this statement prints a two-line heading:
 Item Unit Purchase
 Price Date

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 3: Formatted Input/Output

Escape Sequences
•  Another common escape sequence is \", which

represents the " character:
 printf("\"Hello!\"");
 /* prints "Hello!" */

•  To print a single \ character, put two \ characters
in the string:

 printf("\\");
 /* prints one \ character */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 3: Formatted Input/Output

The scanf Function
•  scanf reads input according to a particular

format.
•  A scanf format string may contain both ordinary

characters and conversion specifications.
•  The conversions allowed with scanf are

essentially the same as those used with printf.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 3: Formatted Input/Output

The scanf Function
•  In many cases, a scanf format string will contain

only conversion specifications:
 int i, j;
 float x, y;

 scanf("%d%d%f%f", &i, &j, &x, &y);

•  Sample input:
 1 -20 .3 -4.0e3

 scanf will assign 1, –20, 0.3, and –4000.0 to i,
j, x, and y, respectively.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 3: Formatted Input/Output

The scanf Function
•  When using scanf, the programmer must check

that the number of conversion specifications
matches the number of input variables and that
each conversion is appropriate for the
corresponding variable.

•  Another trap involves the & symbol, which
normally precedes each variable in a scanf call.

•  The & is usually (but not always) required, and
it’s the programmer’s responsibility to remember
to use it.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 3: Formatted Input/Output

How scanf Works
•  scanf tries to match groups of input characters

with conversion specifications in the format string.
•  For each conversion specification, scanf tries to

locate an item of the appropriate type in the input
data, skipping blank space if necessary.

•  scanf then reads the item, stopping when it
reaches a character that can’t belong to the item.
–  If the item was read successfully, scanf continues

processing the rest of the format string.
–  If not, scanf returns immediately.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 3: Formatted Input/Output

How scanf Works
•  As it searches for a number, scanf ignores white-space

characters (space, horizontal and vertical tab, form-feed, and
new-line).

•  A call of scanf that reads four numbers:
 scanf("%d%d%f%f", &i, &j, &x, &y);

•  The numbers can be on one line or spread over several lines:
 1
 -20 .3
 -4.0e3

•  scanf sees a stream of characters (¤ represents new-line):
 ••1¤-20•••.3¤•••-4.0e3¤
 ssrsrrrsssrrssssrrrrrr (s = skipped; r = read)

•  scanf “peeks” at the final new-line without reading it.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 3: Formatted Input/Output

How scanf Works
•  When asked to read an integer, scanf first

searches for a digit, a plus sign, or a minus sign; it
then reads digits until it reaches a nondigit.

•  When asked to read a floating-point number,
scanf looks for
–  a plus or minus sign (optional), followed by
–  digits (possibly containing a decimal point), followed by
–  an exponent (optional). An exponent consists of the

letter e (or E), an optional sign, and one or more digits.
•  %e, %f, and %g are interchangeable when used

with scanf.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 3: Formatted Input/Output

How scanf Works
•  When scanf encounters a character that can’t be

part of the current item, the character is “put
back” to be read again during the scanning of the
next input item or during the next call of scanf.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 3: Formatted Input/Output

How scanf Works
•  Sample input:
 1-20.3-4.0e3¤

•  The call of scanf is the same as before:
 scanf("%d%d%f%f", &i, &j, &x, &y);

•  Here’s how scanf would process the new input:
–  %d. Stores 1 into i and puts the - character back.
–  %d. Stores –20 into j and puts the . character back.
–  %f. Stores 0.3 into x and puts the - character back.
–  %f. Stores –4.0 × 103 into y and puts the new-line

character back.

 Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 3: Formatted Input/Output

Ordinary Characters in Format Strings
•  When it encounters one or more white-space

characters in a format string, scanf reads white-
space characters from the input until it reaches a
non-white-space character (which is “put back”).

•  When it encounters a non-white-space character in
a format string, scanf compares it with the next
input character.
–  If they match, scanf discards the input character and

continues processing the format string.
–  If they don’t match, scanf puts the offending

character back into the input, then aborts.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 3: Formatted Input/Output

Ordinary Characters in Format Strings
•  Examples:

–  If the format string is "%d/%d" and the input is •5/
•96, scanf succeeds.

–  If the input is •5•/•96 , scanf fails, because the /
in the format string doesn’t match the space in the
input.

•  To allow spaces after the first number, use the
format string "%d /%d" instead.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 3: Formatted Input/Output

Confusing printf with scanf
•  Although calls of scanf and printf may

appear similar, there are significant differences
between the two.

•  One common mistake is to put & in front of
variables in a call of printf:

 printf("%d %d\n", &i, &j); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 3: Formatted Input/Output

Confusing printf with scanf
•  Incorrectly assuming that scanf format strings

should resemble printf format strings is another
common error.

•  Consider the following call of scanf:
 scanf("%d, %d", &i, &j);
–  scanf will first look for an integer in the input, which

it stores in the variable i.
–  scanf will then try to match a comma with the next

input character.
–  If the next input character is a space, not a comma,
scanf will terminate without reading a value for j.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 3: Formatted Input/Output

Confusing printf with scanf
•  Putting a new-line character at the end of a
scanf format string is usually a bad idea.

•  To scanf, a new-line character in a format string
is equivalent to a space; both cause scanf to
advance to the next non-white-space character.

•  If the format string is "%d\n", scanf will skip
white space, read an integer, then skip to the next
non-white-space character.

•  A format string like this can cause an interactive
program to “hang.”

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 3: Formatted Input/Output

Program: Adding Fractions
•  The addfrac.c program prompts the user to

enter two fractions and then displays their sum.
•  Sample program output:
 Enter first fraction: 5/6
 Enter second fraction: 3/4
 The sum is 38/24

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 3: Formatted Input/Output

addfrac.c

/* Adds two fractions */

#include <stdio.h>

int main(void)
{
 int num1, denom1, num2, denom2, result_num, result_denom;

 printf("Enter first fraction: ");
 scanf("%d/%d", &num1, &denom1);

 printf("Enter second fraction: ");
 scanf("%d/%d", &num2, &denom2);

 result_num = num1 * denom2 + num2 *denom1;
 result_denom = denom1 * denom2;
 printf("The sum is %d/%d\n",result_num, result_denom)

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

