Chapter 4

Expressions

C PROGRANMMING :

A Modern Approach stcono eoimion

Operators

* C emphasizes expressions rather than statements.

» Expressions are built from variables, constants,
and operators.

* C has arich collection of operators, including
— arithmetic operators
— relational operators
— logical operators
— assignment operators

— increment and decrement operators

and many others

C PROGRANMMING 2

A Modern Approach stcono eoimion

Arithmetic Operators

* C provides five binary arithmetic operators:

+ addition
subtraction
multiplication
division
remainder

~ X |

o\©

* An operator 1s binary 1f it has two operands.

* There are also two unary arithmetic operators:

+ unary plus
— unary minus

C PROGRANMMING 3

A Modern Approach stcono eoimion

Unary Arithmetic Operators

* The unary operators require one operand:
1= +1;
J = —i;

 The unary + operator does nothing. It s used
primarily to emphasize that a numeric constant 1s
positive.

C PROGRANMMING 4

A Modern Approach secono eoirion

Binary Arithmetic Operators

 The value of 1 % j 1s the remainder when 1 1s
divided by 7.
10 % 3 has the value 1, and 12 % 4 has the value O.
* Binary arithmetic operators—with the exception

of $—allow either integer or floating-point
operands, with mixing allowed.

* When int and f1loat operands are mixed, the
result has type float.

9+ 2.5f has the value 11.5,and 6.7f / 2 has the
value 3.35.

C PROGRANMMING 5

A Modern Approach stcono eoimion

The / and % Operators

 The / and % operators require special care:

— When both operands are integers, / “truncates’ the
result. The value of 1 / 2 1s 0, not 0.5.

— The % operator requires integer operands; 1f either
operand is not an integer, the program won' t compile.

— Using zero as the right operand of either / or % causes
undefined behavior.

— The behavior when / and % are used with negative
operands 1s implementation-defined in C89.

— In C99, the result of a division 1s always truncated toward
zero and the value of 1 $ j has the same sign as 1.

C PROGRANMMING 6

A Modern Approach stcono eoimion

Implementation-Defined Behavior

* The C standard deliberately leaves parts of the
language unspecified.

* Leaving parts of the language unspecified reflects
C’ s emphasis on efficiency, which often means
matching the way that hardware behaves.

e It s best to avoid writing programs that depend on
implementation-defined behavior.

C PROGRANMMING 7

A Modern Approach stcono eoimion

Operator Precedence

e Does i + j * kmean “add i and 7, then multiply
the result by k~ or “multiply j and k, then add
177

* One solution to this problem 1s to add parentheses,
writing either (1 + j) * kori + (j * k).

 If the parentheses are omitted, C uses operator

precedence rules to determine the meaning of the
expression.

C PROGRANMMING :

A Modern Approach stcono eoimion

Operator Precedence

* The arithmetic operators have the following
relative precedence:

Highest: + - (unary)
* / S

Lowest: + - (binary)
« Examples:
i+3*k isequivalentto i+ (J * k)
-1 * =] is equivalentto (-i) * (-7)
+1i+ 3/ k 1sequivalentto (+1i) + (j / k)

C PROGRANMMING 9

A Modern Approach secono eoirion

Operator Associativity

* Associativity comes 1nto play when an expression
contains two or more operators with equal
precedence.

* An operator is said to be left associative 1f 1t
groups from left to right.

* The binary arithmetic operators (*, /, %, +, and -)
are all left associative, so
i-3 -k i1sequivalentto (i - j) -k
i*3/k isequivalentto (i * j) / k

C PROGRANMMING 10

A Modern Approach stcono eoimion

Operator Associativity

* An operator 1s right associative 1f 1t groups from
right to left.

* The unary arithmetic operators (+ and —) are both
right associative, so

-+ 1 1sequivalentto — (+1i)

C PROGRANMMING 11

A Modern Approach secono eoirion

Program: Computing a UPC Check Digit

* Most goods sold in U.S. and Canadian stores are
marked with a Universal Product Code (UPC):

I

15173

0713800

* Meaning of the digits underneath the bar code:
First digit: Type of item
First group of five digits: Manufacturer
Second group of five digits: Product (including package size)
Final digit: Check digit, used to help identify an error in the
preceding digits

5

C PROGRANMMING 12

A Modern Approach secono eoirion

Program: Computing a UPC Check Digit

* How to compute the check digit:

Add the first, third, fifth, seventh, ninth, and eleventh digits.
Add the second, fourth, sixth, eighth, and tenth digits.

Multiply the first sum by 3 and add it to the second sum.
Subtract 1 from the total.

Compute the remainder when the adjusted total 1s divided
by 10.
Subtract the remainder from 9.

C PROGRANMMING 13

A Modern Approach secono eoirion

Program: Computing a UPC Check Digit

» Example for UPC 0 13800 15173 5:

Firstsum: 0+3+0+1+1+3=8.

Second sum: 1 +8+0+5+7=21.

Multiplying the first sum by 3 and adding the second
yields 45.

Subtracting 1 gives 44.

Remainder upon dividing by 10 1s 4.

Remainder 1s subtracted from 9.

Result 1s 5.

C PROGRANMMING 14

A Modern Approach secono eoirion

Program: Computing a UPC Check Digit

e The upc.c program asks the user to enter the first
11 digits of a UPC, then displays the corresponding
check digit:

Enter the first (single) digit: O
Enter first group of five digits: 13800
Enter second group of five digits: 15173
Check digit: 5

* The program reads each digit group as five one-digit
numbers.

 To read single digits, we' 1l use scanf with the
%1d conversion specification.

C PROGRANMMING 15

A Modern Approach secono eoirion

upc.c

/* Computes a Universal Product Code check digit */
#include <stdio.h>

int main (void)
{
int 4, i1, 1i2, i3, 14, 1i5, 31, 3j2, 33, 34, 35,
first sum, second sum, total;

printf ("Enter the first (single) digit: ");

scanf ("%$1d", &d);

printf ("Enter first group of five digits: ");
scanf ("$1d%1d%1d%1d%1d", &il, &i2, &i3, &i4, &i5);
printf ("Enter second group of five digits: ");
scanf ("$1d%1d%1d%1d%1d", &31, &j2, &j3, &j4, &3j5);
first sum = d + i2 + i4 + jl + j3 + J5;

second sum = 11 + i3 + 15 + J2 + j4;

total = 3 * first sum + second sum;

printf ("Check digit: %d\n", 9 - ((total - 1) % 10));

return 0O;

}
C PROGRANMMING 16

A Modern Approach secono eoirion

Assignment Operators

* Simple assignment: used for storing a value 1nto a
variable

 Compound assignment: used for updating a value
already stored 1n a variable

C PROGRAMMING 17

A Modern Approach secono eoirion

Simple Assignment

* The effect of the assignment v = e 1s to evaluate
the expression e and copy its value into v.

e ¢ can be a constant, a variable, or a more
complicated expression:
i =5; /* i is now 5 */
J = iy /* j is now 5 */
k =10 * 1 + 7; /* k is now 55 */

C PROGRANMMING 18

A Modern Approach secono eoirion

Simple Assignment

 Ifvandedon’thave the same type, then the value
of e 1s converted to the type of v as the assignment
takes place:
int 1;
float £,

1 = 72.99f; /* 1 is now 72 */
f = 136; /* £ is now 136.0 */

C PROGRANMMING 19

A Modern Approach secono eoirion

Simple Assignment

* In many programming languages, assignment 1s a
statement; in C, however, assignment 1S an
operator, just like +.

* The value of an assignment v = e 1s the value of v
after the assignment.
— The valueof 1 = 72.99f 1s 72 (not 72.99).

C PROGRANMMING 20

A Modern Approach stcono eoimion

Side Effects

* An operators that modifies one of 1ts operands 1s
said to have a side effect.

* The simple assignment operator has a side effect:
it modifies its left operand.

» Evaluating the expression 1 = 0 produces the
result 0 and—as a side effect—assigns 0 to i.

C PROGRANMMING 21

A Modern Approach stcono eoimion

Side Effects

» Since assignment 1S an operator, several
assignments can be chained together:

i=3=%k=0;

* The = operator 1s right associative, so this
assignment 1s equivalent to
1=(= (k=20));

C PROGRANMMING 22

A Modern Approach stcono eoimion

Side Effects

* Watch out for unexpected results in chained
assignments as a result of type conversion:
int 1i;
float f;

f =1 = 33.3%;

1 1s assigned the value 33, then £ 1s assigned 33.0
(not 33.3).

C PROGRANMMING 23

A Modern Approach stcono eoimion

Side Effects

* An assignment of the form v = e 1s allowed
wherever a value of type v would be permitted:
1= 1;

k =1+ (3 =1);
printf ("%d %d %$d\n", i, j, k)
/* prints "1 1 2" */

« “Embedded assignments” can make programs

hard to read.

* They can also be a source of subtle bugs.

C PROGRANMMING 24

A Modern Approach stcono eoimion

Lvalues

* The assignment operator requires an Ivalue as 1ts
left operand.

* An lvalue represents an object stored in computer
memory, not a constant or the result of a
computation.

* Variables are lvalues; expressions such as 10 or
2 * 1 are not.

C PROGRANMMING 25

A Modern Approach stcono eoimion

Lvalues

* Since the assignment operator requires an lvalue
as its left operand, it’ s illegal to put any other kind
of expression on the left side of an assignment
expression:

12 = 1; /*** WRONG ***/
i+ 9 = 0; /*** WRONG ***/
-1 = j; /*** WRONG ***/

* The compiler will produce an error message such
as “invalid lvalue in assignment.”

C PROGRANMMING 26

A Modern Approach stcono eoimion

Compound Assignment

* Assignments that use the old value of a variable to
compute 1ts new value are common.

« Example:
1 =1 + 2;

» Using the += compound assignment operator, we
simply write:

1 += 2; /* same as 1 =1 + 2; */

C PROGRAMMING 27

A Modern Approach secono eoirion

Compound Assignment

* There are nine other compound assignment operators,
including the following;:

= x= /= o=

* All compound assignment operators work in much the
same way:

v += e adds v to e, storing the result in v

v —= e subtracts e from v, storing the result in v
v *= e multiplies v by e, storing the result in v
v /= e divides v by e, storing the result in v

v $= e computes the remainder when v 1s divided by e,
storing the result in v

C PROGRANMMING 28

A Modern Approach stcono eoimion

Compound Assignment

. ’ 13 . b4
v+=eisn t equivalent” tov=v + e.

One problem is operator precedence: 1 *= 7 + k
isn’ tthe ssameasi =1 * § + k.

There are also rare cases in which v += e differs
from v = v + e because v 1tself has a side effect.

Similar remarks apply to the other compound
assignment operators.

C PROGRANMMING 29

A Modern Approach stcono eoimion

Compound Assignment

* When using the compound assignment operators,
be careful not to switch the two characters that
make up the operator.

* Although i =+ 7 will compile, it 1s equivalent to
i = (+7), which merely copies the value of j
into 1.

C PROGRANMMING 30

A Modern Approach secono eoirion

Increment and Decrement Operators

* Two of the most common operations on a variable
are " incrementing (adding 1) and
“decrementing’ (subtracting 1):

1 =1+ 1;
3 =31 -1

* Incrementing and decrementing can be done using

the compound assignment operators:

+= 1;
—= 1;

i
J

C PROGRANMMING 31

A Modern Approach secono eoirion

Increment and Decrement Operators

* C provides special ++ (increment) and —-
(decrement) operators.

* The ++ operator adds 1 to its operand. The —-
operator subtracts 1.

* The increment and decrement operators are tricky
to use:

— They can be used as prefix operators (++1 and ——1) or
postfix operators (1i++ and 1--).

— They have side effects: they modify the values of their
operands.

C PROGRANMMING 32

A Modern Approach stcono eoimion

Increment and Decrement Operators

» Evaluating the expression ++1i (a “pre-increment”)
yields i + 1 and—as a side effect—increments 1:

i =1;
printf ("i is %d\n", ++1i); /* prints "i 1is 2" */
printf ("1 is %d\n", 1i); /* prints "i is 2" */

» Evaluating the expression i++ (a “post-increment”)
produces the result i, but causes i to be
incremented afterwards:

i = 1;
printf("i is %d\n", i++); /* prints "i is 1" */
printf ("i is %d\n", 1i); /* prints "i is 2" */

C PROGRANMMING 33

A Modern Approach secono eoirion

Increment and Decrement Operators

. 6 o . e . 7] . .
* ++1i means 1ncrement 1 immediately,” while i+
+ means " use the old value of i for now, but

increment i later.”
« How much later? The C standard doesn’ t specify

a precise time, but it’ s safe to assume that i will
be incremented before the next statement 1s

executed.

C PROGRAMMING 34

A Modern Approach secono eoirion

Increment and Decrement Operators

* The —-- operator has similar properties:

1= 1;

printf ("i is %d\n",

printf ("i is %d\n",

1= 1;

printf ("i is %d\n",

printf ("i is %d\n",
C PROGRANMING

A Modern Approach

EEEEEEEEEEEEE

35

/*
/*

/~k
/*

prints
prints

prints
prints

L

1 1s

1 1s
"1 1s

"2

1 1s

O"
O"

1"
O"

*/
*/

*/
*/

Increment and Decrement Operators

 When ++ or —- 1s used more than once in the same
expression, the result can often be hard to understand.

« Example:
i =1;
J = 23

kK = +4+1 + j++;

The last statement 1s equivalent to

i =1+ 1;

k =1+ 73;

3 =31+ L

The final values of i, j, and k are 2, 3, and 4, respectively.

C PROGRANMMING 36

A Modern Approach stcono eoimion

Increment and Decrement Operators

 In contrast, executing the statements
1= 1;
) = 2;
k = i++ + J++;
will give i, j, and k the values 2, 3, and 3,
respectively.

C PROGRANMMING 37

A Modern Approach stcono eoimion

Expression Evaluation

» Table of operators discussed so far:

Precedence Name Symbol(s) Associativity
1 increment (postfix) ++ left
decrement (postfix) --
2 increment (prefix) ++ right
decrement (prefix) -—
unary plus +
unary minus -
3 multiplicative * /% left
additive + - left
5 assignment = *= /= %= += —-= right
C PROGRANMMING 38

A Modern Approach secono eoirion

Expression Evaluation

The table can be used to add parentheses to an expression
that lacks them.

Starting with the operator with highest precedence, put
parentheses around the operator and its operands.

Example:
a=bt=ct+-d+--e/-f Precedence
level

a=b+= (c++) ~d+--e/ -f 1
a=b+= (ct+) —d+ (--e) / (-1f) 2
a=b+= (ct+t+t) —d+ ((--e) / (-f)) 3
a=b+= (((ct+) =d) + ((==e) / (=£))) 4
(a= (b+= (((c++) =d) + ((==e) / (=£))))) 5

C PROGRANMMING 39

A Modern Approach secono eoirion

Order of Subexpression Evaluation

* The value of an expression may depend on the
order in which its subexpressions are evaluated.

 C doesn’ t define the order in which
subexpressions are evaluated (with the exception
of subexpressions involving the logical and,

logical or, conditional, and comma operators).

e In the expression (a +b) * (c - d) wedon't
know whether (a + b) will be evaluated before
(c—d).

C PROGRANMMING 40

A Modern Approach stcono eoimion

Order of Subexpression Evaluation

Most expressions have the same value regardless
of the order in which their subexpressions are

evaluated.

However, this may not be true when a
subexpression modifies one of its operands:

a = 3

c = (b=a+ 2) - (a=1);

The effect of executing the second statement 1s
undefined.

C PROGRANMMING 41

A Modern Approach secono eoirion

Order of Subexpression Evaluation

* Avoid writing expressions that access the value of
a variable and also modify the variable elsewhere
in the expression.

* Some compilers may produce a warning message

such as “operation on ‘a’ may be undefined”
when they encounter such an expression.

C PROGRANMMING 42

A Modern Approach secono eoirion

Order of Subexpression Evaluation

 To prevent problems, it’ s a good idea to avoid
using the assignment operators in subexpressions.

 Instead, use a series of separate assignments:

a = 5;
b =a + 2;
a = 1;
cC = b - a;

The value of ¢ will always be 6.

C PROGRANMMING 43

A Modern Approach secono eoirion

Order of Subexpression Evaluation

* Besides the assignment operators, the only
operators that modify their operands are increment
and decrement.

* When using these operators, be careful that an

expression doesn’ t depend on a particular order of
evaluation.

C PROGRAMMING 44

A Modern Approach secono eoirion

Order of Subexpression Evaluation

« Example:
1= 2;
J =1 * 1++;

e It s natural to assume that j is assigned 4.
However, j could just as well be assigned 6
instead:

1. The second operand (the original value of 1) is fetched,
then 1 1s incremented.

2. The first operand (the new value of i) is fetched.
3. The new and old values of i are multiplied, yielding 6.

C PROGRAMMING 45

A Modern Approach secono eoirion

Undefined Behavior

e Statements suchasc= (b=a+2) - (a=1);
and 7 = 1 * i++; cause undefined behavior.

* Possible effects of undefined behavior:

— The program may behave differently when compiled
with different compilers.

— The program may not compile in the first place.
— If it compiles 1t may not run.

— If it does run, the program may crash, behave
erratically, or produce meaningless results.

 Undetined behavior should be avoided.

C PROGRANMMING 46

A Modern Approach stcono eoimion

Expression Statements

* C has the unusual rule that any expression can be
used as a statement.

« Example:
++1;
i 18 first incremented, then the new value of 1 1s
fetched but then discarded.

C PROGRANMMING 47

A Modern Approach secono eoirion

Expression Statements

» Since its value is discarded, there’ s little point in
using an expression as a statement unless the
expression has a side effect:

1= 1; /* useful */
1—--; /* useful */
i* g - 1; /* not useful */

C PROGRANMMING 48

A Modern Approach secono eoirion

Expression Statements

e A slip of the finger can easily create a “do-
nothing~ expression statement.
* For example, instead of entering
1= 7;
we might accidentally type
i+ 37
* Some compilers can detect meaningless

expression statements; you’ 11 get a warning such
as “statement with no effect.”

C PROGRANMMING 49

A Modern Approach stcono eoimion

