
Chapter 8: Arrays

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 8

Arrays

Chapter 8: Arrays

Scalar Variables versus Aggregate Variables
•  So far, the only variables we’ve seen are scalar:

capable of holding a single data item.
•  C also supports aggregate variables, which can

store collections of values.
•  There are two kinds of aggregates in C: arrays and

structures.
•  The focus of the chapter is on one-dimensional

arrays, which play a much bigger role in C than do
multidimensional arrays.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 8: Arrays

One-Dimensional Arrays
•  An array is a data structure containing a number of

data values, all of which have the same type.
•  These values, known as elements, can be individually

selected by their position within the array.
•  The simplest kind of array has just one dimension.
•  The elements of a one-dimensional array a are

conceptually arranged one after another in a single
row (or column):

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 8: Arrays

One-Dimensional Arrays
•  To declare an array, we must specify the type of

the array’s elements and the number of elements:
 int a[10];

•  The elements may be of any type; the length of the
array can be any (integer) constant expression.

•  Using a macro to define the length of an array is
an excellent practice:

 #define N 10
 …
 int a[N];

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 8: Arrays

Array Subscripting
•  To access an array element, write the array name

followed by an integer value in square brackets.
•  This is referred to as subscripting or indexing the

array.
•  The elements of an array of length n are indexed

from 0 to n – 1.
•  If a is an array of length 10, its elements are

designated by a[0], a[1], …, a[9]:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 8: Arrays

Array Subscripting
•  Expressions of the form a[i] are lvalues, so they

can be used in the same way as ordinary variables:
 a[0] = 1;
 printf("%d\n", a[5]);
 ++a[i];

•  In general, if an array contains elements of type T,
then each element of the array is treated as if it
were a variable of type T.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 8: Arrays

Array Subscripting
•  Many programs contain for loops whose job is to perform

some operation on every element in an array.
•  Examples of typical operations on an array a of length N:
 for (i = 0; i < N; i++)
 a[i] = 0; /* clears a */

 for (i = 0; i < N; i++)
 scanf("%d", &a[i]); /* reads data into a */

 for (i = 0; i < N; i++)
 sum += a[i]; /* sums the elements of a */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 8: Arrays

Array Subscripting
•  C doesn’t require that subscript bounds be

checked; if a subscript goes out of range, the
program’s behavior is undefined.

•  A common mistake: forgetting that an array with n
elements is indexed from 0 to n – 1, not 1 to n:

 int a[10], i;

 for (i = 1; i <= 10; i++)
 a[i] = 0;

 With some compilers, this innocent-looking for
statement causes an infinite loop.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 8: Arrays

Array Subscripting
•  An array subscript may be any integer expression:
 a[i+j*10] = 0;

•  The expression can even have side effects:
 i = 0;
 while (i < N)
 a[i++] = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 8: Arrays

Array Subscripting
•  Be careful when an array subscript has a side effect:
 i = 0;
 while (i < N)
 a[i] = b[i++];

•  The expression a[i] = b[i++] accesses the value
of i and also modifies i, causing undefined behavior.

•  The problem can be avoided by removing the
increment from the subscript:

 for (i = 0; i < N; i++)
 a[i] = b[i];

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 8: Arrays

Program: Reversing a Series of Numbers
•  The reverse.c program prompts the user to

enter a series of numbers, then writes the numbers
in reverse order:

 Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
 In reverse order: 31 50 11 23 94 7 102 49 82 34

•  The program stores the numbers in an array as
they’re read, then goes through the array
backwards, printing the elements one by one.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 8: Arrays

reverse.c

/* Reverses a series of numbers */

#include <stdio.h>

#define N 10

int main(void)
{
 int a[N], i;

 printf("Enter %d numbers: ", N);
 for (i = 0; i < N; i++)
 scanf("%d", &a[i]);

 printf("In reverse order:");
 for (i = N - 1; i >= 0; i--)
 printf(" %d", a[i]);
 printf("\n");

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 8: Arrays

Array Initialization
•  An array, like any other variable, can be given an

initial value at the time it’s declared.
•  The most common form of array initializer is a

list of constant expressions enclosed in braces and
separated by commas:

 int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 8: Arrays

Array Initialization
•  If the initializer is shorter than the array, the remaining

elements of the array are given the value 0:
 int a[10] = {1, 2, 3, 4, 5, 6};
 /* initial value of a is {1, 2, 3, 4, 5, 6, 0, 0, 0, 0} */

•  Using this feature, we can easily initialize an array to all
zeros:

 int a[10] = {0};
 /* initial value of a is {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} */

 There’s a single 0 inside the braces because it’s illegal for
an initializer to be completely empty.

•  It’s also illegal for an initializer to be longer than the array
it initializes.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 8: Arrays

Array Initialization
•  If an initializer is present, the length of the array

may be omitted:
 int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

•  The compiler uses the length of the initializer to
determine how long the array is.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 8: Arrays

Designated Initializers (C99)
•  It’s often the case that relatively few elements of

an array need to be initialized explicitly; the other
elements can be given default values.

•  An example:
 int a[15] =
 {0, 0, 29, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0,
48};

•  For a large array, writing an initializer in this
fashion is tedious and error-prone.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 8: Arrays

Designated Initializers (C99)
•  C99’s designated initializers can be used to solve

this problem.
•  Here’s how we could redo the previous example

using a designated initializer:
 int a[15] = {[2] = 29, [9] = 7, [14] = 48};

•  Each number in brackets is said to be a designator.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 8: Arrays

Designated Initializers (C99)
•  Designated initializers are shorter and easier to

read (at least for some arrays).
•  Also, the order in which the elements are listed no

longer matters.
•  Another way to write the previous example:
 int a[15] = {[14] = 48, [9] = 7, [2] = 29};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 8: Arrays

Designated Initializers (C99)
•  Designators must be integer constant expressions.
•  If the array being initialized has length n, each

designator must be between 0 and n – 1.
•  If the length of the array is omitted, a designator

can be any nonnegative integer.
–  The compiler will deduce the length of the array from

the largest designator.
•  The following array will have 24 elements:
 int b[] = {[5] = 10, [23] = 13, [11] = 36, [15] = 29};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 8: Arrays

Designated Initializers (C99)
•  An initializer may use both the older (element-by-

element) technique and the newer (designated)
technique:

 int c[10] = {5, 1, 9, [4] = 3, 7, 2, [8] = 6};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 8: Arrays

Program: Checking a Number for Repeated Digits

•  The repdigit.c program checks whether any
of the digits in a number appear more than once.

•  After the user enters a number, the program prints
either Repeated digit or No repeated
digit:

 Enter a number: 28212
 Repeated digit

•  The number 28212 has a repeated digit (2); a
number like 9357 doesn’t.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 8: Arrays

Program: Checking a Number for Repeated Digits

•  The program uses an array of 10 Boolean values to keep
track of which digits appear in a number.

•  Initially, every element of the digit_seen array is
false.

•  When given a number n, the program examines n’s
digits one at a time, storing the current digit in a variable
named digit.
–  If digit_seen[digit] is true, then digit appears at least

twice in n.
–  If digit_seen[digit] is false, then digit has not been

seen before, so the program sets digit_seen[digit] to
true and keeps going.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 8: Arrays

repdigit.c

/* Checks numbers for repeated digits */

#include <stdbool.h> /* C99 only */
#include <stdio.h>

int main(void)
{
 bool digit_seen[10] = {false};
 int digit;
 long n;

 printf("Enter a number: ");
 scanf("%ld", &n);
 while (n > 0) {
 digit = n % 10;
 if (digit_seen[digit])
 break;
 digit_seen[digit] = true;
 n /= 10;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 8: Arrays

 if (n > 0)
 printf("Repeated digit\n");
 else
 printf("No repeated digit\n");

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 8: Arrays

Using the sizeof Operator with Arrays
•  The sizeof operator can determine the size of

an array (in bytes).
•  If a is an array of 10 integers, then sizeof(a)

is typically 40 (assuming that each integer requires
four bytes).

•  We can also use sizeof to measure the size of
an array element, such as a[0].

•  Dividing the array size by the element size gives
the length of the array:

 sizeof(a) / sizeof(a[0])

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 8: Arrays

Using the sizeof Operator with Arrays
•  Some programmers use this expression when the

length of the array is needed.
•  A loop that clears the array a:
 for (i = 0; i < sizeof(a) / sizeof(a[0]); i++)
 a[i] = 0;

 Note that the loop doesn’t have to be modified if
the array length should change at a later date.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 8: Arrays

Using the sizeof Operator with Arrays
•  Some compilers produce a warning message for the

expression i < sizeof(a) / sizeof(a[0]).
•  The variable i probably has type int (a signed

type), whereas sizeof produces a value of type
size_t (an unsigned type).

•  Comparing a signed integer with an unsigned
integer can be dangerous, but in this case it’s safe.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 8: Arrays

Using the sizeof Operator with Arrays
•  To avoid a warning, we can add a cast that

converts sizeof(a) / sizeof(a[0]) to a
signed integer:

 for (i = 0; i < (int) (sizeof(a) / sizeof(a[0])); i++)
 a[i] = 0;

•  Defining a macro for the size calculation is often
helpful:

 #define SIZE ((int) (sizeof(a) / sizeof(a[0])))

 for (i = 0; i < SIZE; i++)
 a[i] = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 8: Arrays

Program: Computing Interest
•  The interest.c program prints a table

showing the value of $100 invested at different
rates of interest over a period of years.

•  The user will enter an interest rate and the number
of years the money will be invested.

•  The table will show the value of the money at one-
year intervals—at that interest rate and the next
four higher rates—assuming that interest is
compounded once a year.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 8: Arrays

Program: Computing Interest
•  Here’s what a session with the program will look

like:
 Enter interest rate: 6
 Enter number of years: 5

 Years 6% 7% 8% 9% 10%
 1 106.00 107.00 108.00 109.00 110.00
 2 112.36 114.49 116.64 118.81 121.00
 3 119.10 122.50 125.97 129.50 133.10
 4 126.25 131.08 136.05 141.16 146.41
 5 133.82 140.26 146.93 153.86 161.05

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 8: Arrays

Program: Computing Interest
•  The numbers in the second row depend on the

numbers in the first row, so it makes sense to store
the first row in an array.
–  The values in the array are then used to compute the

second row.
–  This process can be repeated for the third and later rows.

•  The program uses nested for statements.
–  The outer loop counts from 1 to the number of years

requested by the user.
–  The inner loop increments the interest rate from its lowest

value to its highest value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 8: Arrays

interest.c

/* Prints a table of compound interest */

#include <stdio.h>

#define NUM_RATES ((int) (sizeof(value) / sizeof(value[0])))
#define INITIAL_BALANCE 100.00

int main(void)
{
 int i, low_rate, num_years, year;
 double value[5];

 printf("Enter interest rate: ");
 scanf("%d", &low_rate);
 printf("Enter number of years: ");
 scanf("%d", &num_years);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 8: Arrays

 printf("\nYears");
 for (i = 0; i < NUM_RATES; i++) {
 printf("%6d%%", low_rate + i);
 value[i] = INITIAL_BALANCE;
 }
 printf("\n");

 for (year = 1; year <= num_years; year++) {
 printf("%3d ", year);
 for (i = 0; i < NUM_RATES; i++) {
 value[i] += (low_rate + i) / 100.0 * value[i];
 printf("%7.2f", value[i]);
 }
 printf("\n");
 }

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 8: Arrays

Multidimensional Arrays
•  An array may have any number of dimensions.
•  The following declaration creates a two-dimensional array

(a matrix, in mathematical terminology):
 int m[5][9];

•  m has 5 rows and 9 columns. Both rows and columns are
indexed from 0:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 8: Arrays

Multidimensional Arrays
•  To access the element of m in row i, column j,

we must write m[i][j].
•  The expression m[i] designates row i of m, and
m[i][j] then selects element j in this row.

•  Resist the temptation to write m[i,j] instead of
m[i][j].

•  C treats the comma as an operator in this context,
so m[i,j] is the same as m[j].

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 8: Arrays

Multidimensional Arrays
•  Although we visualize two-dimensional arrays as

tables, that’s not the way they’re actually stored
in computer memory.

•  C stores arrays in row-major order, with row 0
first, then row 1, and so forth.

•  How the m array is stored:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 8: Arrays

Multidimensional Arrays
•  Nested for loops are ideal for processing

multidimensional arrays.
•  Consider the problem of initializing an array for use as an

identity matrix. A pair of nested for loops is perfect:
 #define N 10

 double ident[N][N];
 int row, col;

 for (row = 0; row < N; row++)
 for (col = 0; col < N; col++)
 if (row == col)
 ident[row][col] = 1.0;
 else
 ident[row][col] = 0.0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 8: Arrays

Initializing a Multidimensional Array
•  We can create an initializer for a two-dimensional

array by nesting one-dimensional initializers:
 int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},
 {0, 1, 0, 1, 0, 1, 0, 1, 0},
 {0, 1, 0, 1, 1, 0, 0, 1, 0},
 {1, 1, 0, 1, 0, 0, 0, 1, 0},
 {1, 1, 0, 1, 0, 0, 1, 1, 1}};

•  Initializers for higher-dimensional arrays are
constructed in a similar fashion.

•  C provides a variety of ways to abbreviate
initializers for multidimensional arrays

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 8: Arrays

Initializing a Multidimensional Array
•  If an initializer isn’t large enough to fill a

multidimensional array, the remaining elements
are given the value 0.

•  The following initializer fills only the first three
rows of m; the last two rows will contain zeros:

 int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},
 {0, 1, 0, 1, 0, 1, 0, 1, 0},
 {0, 1, 0, 1, 1, 0, 0, 1, 0}};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 8: Arrays

Initializing a Multidimensional Array
•  If an inner list isn’t long enough to fill a row, the

remaining elements in the row are initialized to 0:
 int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},
 {0, 1, 0, 1, 0, 1, 0, 1},
 {0, 1, 0, 1, 1, 0, 0, 1},
 {1, 1, 0, 1, 0, 0, 0, 1},
 {1, 1, 0, 1, 0, 0, 1, 1, 1}};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 8: Arrays

Initializing a Multidimensional Array
•  We can even omit the inner braces:
 int m[5][9] = {1, 1, 1, 1, 1, 0, 1, 1, 1,
 0, 1, 0, 1, 0, 1, 0, 1, 0,
 0, 1, 0, 1, 1, 0, 0, 1, 0,
 1, 1, 0, 1, 0, 0, 0, 1, 0,
 1, 1, 0, 1, 0, 0, 1, 1, 1};

 Once the compiler has seen enough values to fill
one row, it begins filling the next.

•  Omitting the inner braces can be risky, since an
extra element (or even worse, a missing element)
will affect the rest of the initializer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 8: Arrays

Initializing a Multidimensional Array
•  C99’s designated initializers work with

multidimensional arrays.
•  How to create 2 × 2 identity matrix:
 double ident[2][2] = {[0][0] = 1.0, [1][1] = 1.0};

 As usual, all elements for which no value is
specified will default to zero.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 8: Arrays

Constant Arrays
•  An array can be made “constant” by starting its

declaration with the word const:
 const char hex_chars[] =
 {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 'A', 'B', 'C', 'D', 'E', 'F'};

•  An array that’s been declared const should not
be modified by the program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 8: Arrays

Constant Arrays
•  Advantages of declaring an array to be const:

–  Documents that the program won’t change the array.
–  Helps the compiler catch errors.

•  const isn’t limited to arrays, but it’s particularly
useful in array declarations.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 8: Arrays

Program: Dealing a Hand of Cards
•  The deal.c program illustrates both two-

dimensional arrays and constant arrays.
•  The program deals a random hand from a standard

deck of playing cards.
•  Each card in a standard deck has a suit (clubs,

diamonds, hearts, or spades) and a rank (two,
three, four, five, six, seven, eight, nine, ten, jack,
queen, king, or ace).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 8: Arrays

Program: Dealing a Hand of Cards
•  The user will specify how many cards should be in

the hand:
 Enter number of cards in hand: 5
 Your hand: 7c 2s 5d as 2h

•  Problems to be solved:
–  How do we pick cards randomly from the deck?
–  How do we avoid picking the same card twice?

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 8: Arrays

Program: Dealing a Hand of Cards
•  To pick cards randomly, we’ll use several C

library functions:
–  time (from <time.h>) – returns the current time,

encoded in a single number.
–  srand (from <stdlib.h>) – initializes C’s random

number generator.
–  rand (from <stdlib.h>) – produces an apparently

random number each time it’s called.

•  By using the % operator, we can scale the return
value from rand so that it falls between 0 and 3
(for suits) or between 0 and 12 (for ranks).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 8: Arrays

Program: Dealing a Hand of Cards
•  The in_hand array is used to keep track of which

cards have already been chosen.
•  The array has 4 rows and 13 columns; each element

corresponds to one of the 52 cards in the deck.
•  All elements of the array will be false to start with.
•  Each time we pick a card at random, we’ll check

whether the element of in_hand corresponding to
that card is true or false.
–  If it’s true, we’ll have to pick another card.
–  If it’s false, we’ll store true in that element to remind us

later that this card has already been picked.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 8: Arrays

Program: Dealing a Hand of Cards
•  Once we’ve verified that a card is “new,” we’ll

need to translate its numerical rank and suit into
characters and then display the card.

•  To translate the rank and suit to character form,
we’ll set up two arrays of characters—one for the
rank and one for the suit—and then use the
numbers to subscript the arrays.

•  These arrays won’t change during program
execution, so they are declared to be const.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 8: Arrays

deal.c

/* Deals a random hand of cards */

#include <stdbool.h> /* C99 only */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define NUM_SUITS 4
#define NUM_RANKS 13

int main(void)
{
 bool in_hand[NUM_SUITS][NUM_RANKS] = {false};
 int num_cards, rank, suit;
 const char rank_code[] = {'2','3','4','5','6','7','8',
 '9','t','j','q','k','a'};
 const char suit_code[] = {'c','d','h','s'};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 8: Arrays

 srand((unsigned) time(NULL));

 printf("Enter number of cards in hand: ");
 scanf("%d", &num_cards);

 printf("Your hand:");
 while (num_cards > 0) {
 suit = rand() % NUM_SUITS; /* picks a random suit */
 rank = rand() % NUM_RANKS; /* picks a random rank */
 if (!in_hand[suit][rank]) {
 in_hand[suit][rank] = true;
 num_cards--;
 printf(" %c%c", rank_code[rank], suit_code[suit]);
 }
 }
 printf("\n");

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 8: Arrays

Variable-Length Arrays (C99)
•  In C89, the length of an array variable must be

specified by a constant expression.
•  In C99, however, it’s sometimes possible to use

an expression that’s not constant.
•  The reverse2.c program—a modification of
reverse.c—illustrates this ability.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 8: Arrays

reverse2.c

/* Reverses a series of numbers using a variable-length
 array - C99 only */

#include <stdio.h>

int main(void)
{
 int i, n;

 printf("How many numbers do you want to reverse? ");
 scanf("%d", &n);

 int a[n]; /* C99 only - length of array depends on n */

 printf("Enter %d numbers: ", n);
 for (i = 0; i < n; i++)

 scanf("%d", &a[i]);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 8: Arrays

 printf("In reverse order:");
 for (i = n - 1; i >= 0; i--)
 printf(" %d", a[i]);
 printf("\n");

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 8: Arrays

Variable-Length Arrays (C99)
•  The array a in the reverse2.c program is an

example of a variable-length array (or VLA).
•  The length of a VLA is computed when the

program is executed.
•  The chief advantage of a VLA is that a program

can calculate exactly how many elements are
needed.

•  If the programmer makes the choice, it’s likely
that the array will be too long (wasting memory)
or too short (causing the program to fail).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 8: Arrays

Variable-Length Arrays (C99)
•  The length of a VLA doesn’t have to be specified

by a single variable. Arbitrary expressions are legal:
 int a[3*i+5];
 int b[j+k];

•  Like other arrays, VLAs can be multidimensional:
 int c[m][n];

•  Restrictions on VLAs:
–  Can’t have static storage duration (discussed in Chapter

18).
–  Can’t have an initializer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

