
Chapter 9: Functions 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

1 

Chapter 9 

Functions 



Chapter 9: Functions 

Introduction 
•  A function is a series of statements that have been 

grouped together and given a name. 
•  Each function is essentially a small program, with 

its own declarations and statements. 
•  Advantages of functions: 

–  A program can be divided into small pieces that are 
easier to understand and modify. 

–  We can avoid duplicating code that’s used more than 
once. 

–  A function that was originally part of one program can 
be reused in other programs. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

2 



Chapter 9: Functions 

Defining and Calling Functions 
•  Before we go over the formal rules for defining a 

function, let’s look at three simple programs that 
define functions. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

3 



Chapter 9: Functions 

Program: Computing Averages 
•  A function named average that computes the 

average of two double values: 
 double average(double a, double b) 
 { 
   return (a + b) / 2; 
 } 

•  The word double at the beginning is the return 
type of average. 

•  The identifiers a and b (the function’s 
parameters) represent the numbers that will be 
supplied when average is called. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

4 



Chapter 9: Functions 

Program: Computing Averages 
•  Every function has an executable part, called the 

body, which is enclosed in braces. 
•  The body of average consists of a single 
return statement. 

•  Executing this statement causes the function to 
“return” to the place from which it was called; the 
value of (a + b) / 2 will be the value returned 
by the function. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

5 



Chapter 9: Functions 

Program: Computing Averages 
•  A function call consists of a function name 

followed by a list of arguments. 
–  average(x, y) is a call of the average function. 

•  Arguments are used to supply information to a 
function. 
–  The call average(x, y) causes the values of x and 
y to be copied into the parameters a and b. 

•  An argument doesn’t have to be a variable; any 
expression of a compatible type will do. 
–  average(5.1, 8.9) and average(x/2, y/3) 

are legal. 
Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

6 



Chapter 9: Functions 

Program: Computing Averages 
•  We’ll put the call of average in the place where 

we need to use the return value. 
•  A statement that prints the average of x and y: 
 printf("Average: %g\n", average(x, y)); 

 The return value of average isn’t saved; the 
program prints it and then discards it. 

•  If we had needed the return value later in the 
program, we could have captured it in a variable: 

 avg = average(x, y);  

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

7 



Chapter 9: Functions 

Program: Computing Averages 
•  The average.c program reads three numbers 

and uses the average function to compute their 
averages, one pair at a time: 

 Enter three numbers: 3.5 9.6 10.2 
 Average of 3.5 and 9.6: 6.55 
 Average of 9.6 and 10.2: 9.9 
 Average of 3.5 and 10.2: 6.85 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

8 



Chapter 9: Functions 

average.c 
  

/* Computes pairwise averages of three numbers */ 
  
#include <stdio.h> 
  
double average(double a, double b) 
{ 
  return (a + b) / 2; 
} 
  
int main(void) 
{ 
  double x, y, z; 
  
  printf("Enter three numbers: "); 
  scanf("%lf%lf%lf", &x, &y, &z); 
  printf("Average of %g and %g: %g\n", x, y, average(x, y)); 
  printf("Average of %g and %g: %g\n", y, z, average(y, z)); 
  printf("Average of %g and %g: %g\n", x, z, average(x, z)); 
  
  return 0; 
} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

9 



Chapter 9: Functions 

Program: Printing a Countdown 
•  To indicate that a function has no return value, we 

specify that its return type is void: 
 void print_count(int n) 
 { 
   printf("T minus %d and counting\n", n); 
 } 

•  void is a type with no values. 
•  A call of print_count must appear in a statement by 

itself: 
 print_count(i); 

•  The countdown.c program calls print_count 10 
times inside a loop. 

 Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

10 



Chapter 9: Functions 

countdown.c 
  

/* Prints a countdown */ 
  
#include <stdio.h> 
  
void print_count(int n) 
{ 
  printf("T minus %d and counting\n", n); 
}  
  
int main(void) 
{ 
  int i; 
  
  for (i = 10; i > 0; --i) 
    print_count(i); 
  
  return 0; 
} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

11 



Chapter 9: Functions 

Program: Printing a Pun (Revisited) 
•  When a function has no parameters, the word void is 

placed in parentheses after the function’s name: 
 void print_pun(void) 
 { 
   printf("To C, or not to C: that is the question.\n"); 
 } 

•  To call a function with no arguments, we write the 
function’s name, followed by parentheses: 

 print_pun(); 

 The parentheses must be present. 
•  The pun2.c program tests the print_pun function. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

12 



Chapter 9: Functions 

pun2.c 
  

/* Prints a bad pun */ 
  
#include <stdio.h> 
  
void print_pun(void) 
{ 
  printf("To C, or not to C: that is the question.\n"); 
} 
  
int main(void) 
{ 
  print_pun(); 
  return 0; 
} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

13 



Chapter 9: Functions 

Function Definitions 
•  General form of a function definition: 

 return-type function-name ( parameters ) 
 { 
   declarations 
   statements 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

14 



Chapter 9: Functions 

Function Definitions 
•  The return type of a function is the type of value 

that the function returns. 
•  Rules governing the return type: 

–  Functions may not return arrays. 
–  Specifying that the return type is void indicates that 

the function doesn’t return a value. 

•  If the return type is omitted in C89, the function is 
presumed to return a value of type int. 

•  In C99, omitting the return type is illegal. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

15 



Chapter 9: Functions 

Function Definitions 
•  As a matter of style, some programmers put the 

return type above the function name: 
 double 
 average(double a, double b) 
 { 
   return (a + b) / 2; 
 } 

•  Putting the return type on a separate line is 
especially useful if the return type is lengthy, like 
unsigned long int. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

16 



Chapter 9: Functions 

Function Definitions 
•  After the function name comes a list of 

parameters. 
•  Each parameter is preceded by a specification of 

its type; parameters are separated by commas. 
•  If the function has no parameters, the word void 

should appear between the parentheses. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

17 



Chapter 9: Functions 

Function Definitions 
•  The body of a function may include both 

declarations and statements. 
•  An alternative version of the average function: 
 double average(double a, double b) 
 { 
   double sum;       /* declaration */ 
   
   sum = a + b;      /* statement */ 
   return sum / 2;   /* statement */ 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

18 



Chapter 9: Functions 

Function Definitions 
•  Variables declared in the body of a function can’t 

be examined or modified by other functions. 
•  In C89, variable declarations must come first, 

before all statements in the body of a function. 
•  In C99, variable declarations and statements can 

be mixed, as long as each variable is declared 
prior to the first statement that uses the variable. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

19 



Chapter 9: Functions 

Function Definitions 
•  The body of a function whose return type is void 

(a “void function”) can be empty: 
 void print_pun(void) 
 { 
 } 

•  Leaving the body empty may make sense as a 
temporary step during program development. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

20 



Chapter 9: Functions 

Function Calls 
•  A function call consists of a function name 

followed by a list of arguments, enclosed in 
parentheses: 

 average(x, y) 
 print_count(i) 
 print_pun() 

•  If the parentheses are missing, the function won’t 
be called: 

 print_pun;   /*** WRONG ***/ 

 This statement is legal but has no effect.  

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

21 



Chapter 9: Functions 

Function Calls 
•  A call of a void function is always followed by a 

semicolon to turn it into a statement: 
 print_count(i); 
 print_pun(); 

•  A call of a non-void function produces a value that 
can be stored in a variable, tested, printed, or used in 
some other way: 

 avg = average(x, y); 
 if (average(x, y) > 0) 
   printf("Average is positive\n"); 
 printf("The average is %g\n", average(x, y)); 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

22 



Chapter 9: Functions 

Function Calls 
•  The value returned by a non-void function can 

always be discarded if it’s not needed: 
 average(x, y);  /* discards return value */ 

 This call is an example of an expression statement: 
a statement that evaluates an expression but then 
discards the result. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

23 



Chapter 9: Functions 

Function Calls 
•  Ignoring the return value of average is an odd 

thing to do, but for some functions it makes sense. 
•  printf returns the number of characters that it 

prints. 
•  After the following call, num_chars will have 

the value 9: 
 num_chars = printf("Hi, Mom!\n"); 

•  We’ll normally discard printf’s return value: 
 printf("Hi, Mom!\n"); 
   /* discards return value */ 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

24 



Chapter 9: Functions 

Function Calls 
•  To make it clear that we’re deliberately discarding 

the return value of a function, C allows us to put 
(void) before the call: 

 (void) printf("Hi, Mom!\n"); 

•  Using (void) makes it clear to others that you 
deliberately discarded the return value, not just 
forgot that there was one. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

25 



Chapter 9: Functions 

Program: Testing Whether a Number Is Prime 
•  The prime.c program tests whether a number is 

prime: 
 Enter a number: 34 
 Not prime 

•  The program uses a function named is_prime 
that returns true if its parameter is a prime 
number and false if it isn’t. 

•  is_prime divides its parameter n by each of the 
numbers between 2 and the square root of n; if the 
remainder is ever 0, n isn’t prime. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

26 



Chapter 9: Functions 

prime.c 
  

/* Tests whether a number is prime */ 
  
#include <stdbool.h>   /* C99 only */ 
#include <stdio.h> 
  
bool is_prime(int n) 
{ 
  int divisor; 
  
  if (n <= 1) 
    return false; 
  for (divisor = 2; divisor * divisor <= n; divisor++) 
    if (n % divisor == 0) 
      return false; 
  return true; 
} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

27 



Chapter 9: Functions 

int main(void) 
{ 
  int n; 
  
  printf("Enter a number: "); 
  scanf("%d", &n); 
  if (is_prime(n)) 
    printf("Prime\n"); 
  else 
    printf("Not prime\n"); 
  return 0; 
}  

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

28 



Chapter 9: Functions 

Function Declarations 
•  C doesn’t require that the definition of a function 

precede its calls. 
•  Suppose that we rearrange the average.c 

program by putting the definition of average 
after the definition of main. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

29 



Chapter 9: Functions 

Function Declarations 
#include <stdio.h> 
   

int main(void) 
{ 
  double x, y, z; 
   

  printf("Enter three numbers: "); 
  scanf("%lf%lf%lf", &x, &y, &z); 
  printf("Average of %g and %g: %g\n", x, y, average(x, 

y)); 
  printf("Average of %g and %g: %g\n", y, z, average(y, 

z)); 
  printf("Average of %g and %g: %g\n", x, z, average(x, 

z)); 
   

  return 0; 
} 
  
double average(double a, double b) 
{ 
  return (a + b) / 2; 
} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

30 



Chapter 9: Functions 

Function Declarations 
•  When the compiler encounters the first call of 
average in main, it has no information about 
the function. 

•  Instead of producing an error message, the 
compiler assumes that average returns an int 
value. 

•  We say that the compiler has created an implicit 
declaration of the function. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

31 



Chapter 9: Functions 

Function Declarations 
•  The compiler is unable to check that we’re 

passing average the right number of arguments 
and that the arguments have the proper type. 

•  Instead, it performs the default argument 
promotions and hopes for the best. 

•  When it encounters the definition of average 
later in the program, the compiler notices that the 
function’s return type is actually double, not 
int, and so we get an error message. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

32 



Chapter 9: Functions 

Function Declarations 
•  One way to avoid the problem of call-before-

definition is to arrange the program so that the 
definition of each function precedes all its calls. 

•  Unfortunately, such an arrangement doesn’t 
always exist. 

•  Even when it does, it may make the program 
harder to understand by putting its function 
definitions in an unnatural order. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

33 



Chapter 9: Functions 

Function Declarations 
•  Fortunately, C offers a better solution: declare each 

function before calling it. 
•  A function declaration provides the compiler with a 

brief glimpse at a function whose full definition will 
appear later. 

•  General form of a function declaration: 
 return-type function-name ( parameters ) ; 

•  The declaration of a function must be consistent with 
the function’s definition. 

•  Here’s the average.c program with a declaration of 
average added. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

34 



Chapter 9: Functions 

Function Declarations 
#include <stdio.h> 
   

double average(double a, double b);   /* DECLARATION */ 
   

int main(void) 
{ 
  double x, y, z; 
   

  printf("Enter three numbers: "); 
  scanf("%lf%lf%lf", &x, &y, &z); 
  printf("Average of %g and %g: %g\n", x, y, average(x, 

y)); 
  printf("Average of %g and %g: %g\n", y, z, average(y, 

z)); 
  printf("Average of %g and %g: %g\n", x, z, average(x, 

z)); 
   

  return 0; 
} 
   

double average(double a, double b)    /* DEFINITION */ 
{ 
  return (a + b) / 2; 
} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

35 



Chapter 9: Functions 

Function Declarations 
•  Function declarations of the kind we’re discussing 

are known as function prototypes.  
•  C also has an older style of function declaration in 

which the parentheses are left empty. 
•  A function prototype doesn’t have to specify the 

names of the function’s parameters, as long as 
their types are present: 

 double average(double, double); 

•  It’s usually best not to omit parameter names. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

36 



Chapter 9: Functions 

Function Declarations 
•  C99 has adopted the rule that either a declaration 

or a definition of a function must be present prior 
to any call of the function. 

•  Calling a function for which the compiler has not 
yet seen a declaration or definition is an error. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

37 



Chapter 9: Functions 

Arguments 
•  In C, arguments are passed by value: when a 

function is called, each argument is evaluated and 
its value assigned to the corresponding parameter. 

•  Since the parameter contains a copy of the 
argument’s value, any changes made to the 
parameter during the execution of the function 
don’t affect the argument. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

38 



Chapter 9: Functions 

Arguments 
•  The fact that arguments are passed by value has 

both advantages and disadvantages. 
•  Since a parameter can be modified without 

affecting the corresponding argument, we can use 
parameters as variables within the function, 
reducing the number of genuine variables needed. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

39 



Chapter 9: Functions 

Arguments 
•  Consider the following function, which raises a 

number x to a power n: 
 int power(int x, int n) 
 { 
   int i, result = 1; 
   
   for (i = 1; i <= n; i++) 
     result = result * x; 
   
   return result; 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

40 



Chapter 9: Functions 

Arguments 
•  Since n is a copy of the original exponent, the 

function can safely modify it, removing the need 
for i: 

 int power(int x, int n) 
 { 
   int result = 1; 
   
   while (n-- > 0) 
     result = result * x; 
   
   return result; 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

41 



Chapter 9: Functions 

Arguments 
•  C’s requirement that arguments be passed by value 

makes it difficult to write certain kinds of functions. 
•  Suppose that we need a function that will decompose a 
double value into an integer part and a fractional part. 

•  Since a function can’t return two numbers, we might try 
passing a pair of variables to the function and having it 
modify them: 

 void decompose(double x, long int_part, 
                double frac_part) 
 { 
   int_part = (long) x; 
   frac_part = x - int_part; 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

42 



Chapter 9: Functions 

Arguments 
•  A call of the function: 
 decompose(3.14159, i, d); 

•  Unfortunately, i and d won’t be affected by the 
assignments to int_part and frac_part. 

•  Chapter 11 shows how to make decompose 
work correctly. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

43 



Chapter 9: Functions 

Argument Conversions 
•  C allows function calls in which the types of the 

arguments don’t match the types of the 
parameters. 

•  The rules governing how the arguments are 
converted depend on whether or not the compiler 
has seen a prototype for the function (or the 
function’s full definition) prior to the call. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

44 



Chapter 9: Functions 

Argument Conversions 
•  The compiler has encountered a prototype prior 

to the call. 
•  The value of each argument is implicitly 

converted to the type of the corresponding 
parameter as if by assignment. 

•  Example: If an int argument is passed to a 
function that was expecting a double, the 
argument is converted to double automatically. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

45 



Chapter 9: Functions 

Argument Conversions 
•  The compiler has not encountered a prototype 

prior to the call. 
•  The compiler performs the default argument 

promotions: 
–  float arguments are converted to double. 
–  The integral promotions are performed, causing char 

and short arguments to be converted to int. (In C99, 
the integer promotions are performed.) 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

46 



Chapter 9: Functions 

Argument Conversions 
•  Relying on the default argument promotions is dangerous. 
•  Example: 
 #include <stdio.h> 
   
 int main(void) 
 { 
   double x = 3.0; 
   printf("Square: %d\n", square(x)); 
   
   return 0; 
 } 
   
 int square(int n) 
 { 
   return n * n; 
 } 

•  At the time square is called, the compiler doesn’t know 
that it expects an argument of type int. 

 Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

47 



Chapter 9: Functions 

Argument Conversions 
•  Instead, the compiler performs the default argument 

promotions on x, with no effect. 
•  Since it’s expecting an argument of type int but has been 

given a double value instead, the effect of calling square 
is undefined. 

•  The problem can be fixed by casting square’s argument to 
the proper type: 

 printf("Square: %d\n", square((int) x)); 

•  A much better solution is to provide a prototype for square 
before calling it. 

•  In C99, calling square without first providing a declaration 
or definition of the function is an error. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

48 



Chapter 9: Functions 

Array Arguments 
•  When a function parameter is a one-dimensional 

array, the length of the array can be left unspecified: 
 int f(int a[])  /* no length specified */ 
 { 
   … 
 } 

•  C doesn’t provide any easy way for a function to 
determine the length of an array passed to it. 

•  Instead, we’ll have to supply the length—if the 
function needs it—as an additional argument. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

49 



Chapter 9: Functions 

Array Arguments 
•  Example: 
 int sum_array(int a[], int n) 
 { 
   int i, sum = 0; 
   
   for (i = 0; i < n; i++) 
     sum += a[i]; 
   
   return sum; 
 } 

•  Since sum_array needs to know the length of a, 
we must supply it as a second argument. 

 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

50 



Chapter 9: Functions 

Array Arguments 
•  The prototype for sum_array has the following 

appearance: 
 int sum_array(int a[], int n); 

•  As usual, we can omit the parameter names if we 
wish: 

 int sum_array(int [], int); 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

51 



Chapter 9: Functions 

Array Arguments 
•  When sum_array is called, the first argument will be the 

name of an array, and the second will be its length: 
 #define LEN 100 
   
 int main(void) 
 { 
   int b[LEN], total; 
   … 
   total = sum_array(b, LEN); 
   … 
 } 

•  Notice that we don’t put brackets after an array name 
when passing it to a function: 

 total = sum_array(b[], LEN);   /*** WRONG ***/ 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

52 



Chapter 9: Functions 

Array Arguments 
•  A function has no way to check that we’ve passed 

it the correct array length. 
•  We can exploit this fact by telling the function that 

the array is smaller than it really is. 
•  Suppose that we’ve only stored 50 numbers in the 
b array, even though it can hold 100. 

•  We can sum just the first 50 elements by writing 
 total = sum_array(b, 50); 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

53 



Chapter 9: Functions 

Array Arguments 
•  Be careful not to tell a function that an array 

argument is larger than it really is: 
 total = sum_array(b, 150);    /*** WRONG ***/ 

 sum_array will go past the end of the array, 
causing undefined behavior. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

54 



Chapter 9: Functions 

Array Arguments 
•  A function is allowed to change the elements of an 

array parameter, and the change is reflected in the 
corresponding argument. 

•  A function that modifies an array by storing zero 
into each of its elements: 

 void store_zeros(int a[], int n) 
 { 
   int i; 
   
   for (i = 0; i < n; i++)  
     a[i] = 0; 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

55 



Chapter 9: Functions 

Array Arguments 
•  A call of store_zeros: 
 store_zeros(b, 100); 

•  The ability to modify the elements of an array 
argument may seem to contradict the fact that C 
passes arguments by value. 

•  Chapter 12 explains why there’s actually no 
contradiction. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

56 



Chapter 9: Functions 

Array Arguments 
•  If a parameter is a multidimensional array, only the length 

of the first dimension may be omitted. 
•  If we revise sum_array so that a is a two-dimensional 

array, we must specify the number of columns in a: 
 #define LEN 10 
   
 int sum_two_dimensional_array(int a[][LEN], int n) 
 { 
   int i, j, sum = 0; 
   
   for (i = 0; i < n; i++) 
     for (j = 0; j < LEN; j++) 
       sum += a[i][j]; 
   
   return sum; 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

57 



Chapter 9: Functions 

Array Arguments 
•  Not being able to pass multidimensional arrays 

with an arbitrary number of columns can be a 
nuisance. 

•  We can often work around this difficulty by using 
arrays of pointers. 

•  C99’s variable-length array parameters provide an 
even better solution. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

58 



Chapter 9: Functions 

Variable-Length Array Parameters (C99) 
•  C99 allows the use of variable-length arrays as 

parameters. 
•  Consider the sum_array function: 
 int sum_array(int a[], int n) 
 { 
   … 
 } 

 As it stands now, there’s no direct link between n and 
the length of the array a. 

•  Although the function body treats n as a’s length, the 
actual length of the array could be larger or smaller 
than n. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

59 



Chapter 9: Functions 

Variable-Length Array Parameters (C99) 
•  Using a variable-length array parameter, we can 

explicitly state that a’s length is n: 
 int sum_array(int n, int a[n]) 
 { 
   … 
 } 

•  The value of the first parameter (n) specifies the 
length of the second parameter (a). 

•  Note that the order of the parameters has been 
switched; order is important when variable-length 
array parameters are used. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

60 



Chapter 9: Functions 

Variable-Length Array Parameters (C99) 
•  There are several ways to write the prototype for 

the new version of sum_array. 
•  One possibility is to make it look exactly like the 

function definition: 
 int sum_array(int n, int a[n]);  /* Version 1 */ 

•  Another possibility is to replace the array length by 
an asterisk (*): 

 int sum_array(int n, int a[*]);  /* Version 2a */ 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

61 



Chapter 9: Functions 

Variable-Length Array Parameters (C99) 
•  The reason for using the * notation is that 

parameter names are optional in function 
declarations. 

•  If the name of the first parameter is omitted, it 
wouldn’t be possible to specify that the length of 
the array is n, but the * provides a clue that the 
length of the array is related to parameters that 
come earlier in the list: 

 int sum_array(int, int [*]);     /* Version 2b */ 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

62 



Chapter 9: Functions 

Variable-Length Array Parameters (C99) 
•  It’s also legal to leave the brackets empty, as we 

normally do when declaring an array parameter: 
 int sum_array(int n, int a[]);  /* Version 3a */ 
 int sum_array(int, int []);     /* Version 3b */ 

•  Leaving the brackets empty isn’t a good choice, 
because it doesn’t expose the relationship between 
n and a. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

63 



Chapter 9: Functions 

Variable-Length Array Parameters (C99) 
•  In general, the length of a variable-length array parameter 

can be any expression. 
•  A function that concatenates two arrays a and b, storing the 

result into a third array named c: 
 int concatenate(int m, int n, int a[m], int b[n], 
                 int c[m+n]) 
 { 
   … 
 } 

•  The expression used to specify the length of c involves two 
other parameters, but in general it could refer to variables 
outside the function or even call other functions. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

64 



Chapter 9: Functions 

Variable-Length Array Parameters (C99) 
•  Variable-length array parameters with a single 

dimension have limited usefulness. 
•  They make a function declaration or definition 

more descriptive by stating the desired length of 
an array argument. 

•  However, no additional error-checking is 
performed; it’s still possible for an array argument 
to be too long or too short. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

65 



Chapter 9: Functions 

Variable-Length Array Parameters (C99) 
•  Variable-length array parameters are most useful for 

multidimensional arrays. 
•  By using a variable-length array parameter, we can 

generalize the sum_two_dimensional_array 
function to any number of columns: 

 int sum_two_dimensional_array(int n, int m, int a[n][m]) 
 { 
   int i, j, sum = 0; 
   
   for (i = 0; i < n; i++) 
     for (j = 0; j < m; j++) 
       sum += a[i][j]; 
   
   return sum; 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

66 



Chapter 9: Functions 

Variable-Length Array Parameters (C99) 
•  Prototypes for this function include: 
 int sum_two_dimensional_array(int n, int m, int a[n][m]); 
 int sum_two_dimensional_array(int n, int m, int a[*][*]); 
 int sum_two_dimensional_array(int n, int m, int a[][m]); 
 int sum_two_dimensional_array(int n, int m, int a[][*]); 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

67 



Chapter 9: Functions 

Using static in Array Parameter 
Declarations (C99) 

•  C99 allows the use of the keyword static in the 
declaration of array parameters. 

•  The following example uses static to indicate 
that the length of a is guaranteed to be at least 3: 

 int sum_array(int a[static 3], int n) 
 { 
   … 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

68 



Chapter 9: Functions 

Using static in Array Parameter 
Declarations (C99) 

•  Using static has no effect on program 
behavior. 

•  The presence of static is merely a “hint” that 
may allow a C compiler to generate faster 
instructions for accessing the array. 

•  If an array parameter has more than one 
dimension, static can be used only in the first 
dimension. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

69 



Chapter 9: Functions 

Compound Literals (C99) 
•  Let’s return to the original sum_array function. 
•  When sum_array is called, the first argument is 

usually the name of an array. 
•  Example: 
 int b[] = {3, 0, 3, 4, 1}; 
 total = sum_array(b, 5); 

•  b must be declared as a variable and then initialized 
prior to the call. 

•  If b isn’t needed for any other purpose, it can be 
annoying to create it solely for the purpose of calling 
sum_array. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

70 



Chapter 9: Functions 

Compound Literals (C99) 
•  In C99, we can avoid this annoyance by using a compound 

literal: an unnamed array that’s created “on the fly” by 
simply specifying which elements it contains. 

•  A call of sum_array with a compound literal (shown in 
bold) as its first argument: 

 total = sum_array((int []){3, 0, 3, 4, 1}, 5); 

•  We didn’t specify the length of the array, so it’s 
determined by the number of elements in the literal. 

•  We also have the option of specifying a length explicitly:  
 (int [4]){1, 9, 2, 1} 

 is equivalent to 
 (int []){1, 9, 2, 1} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

71 



Chapter 9: Functions 

Compound Literals (C99) 
•  A compound literal resembles a cast applied to an 

initializer. 
•  In fact, compound literals and initializers obey the 

same rules. 
•  A compound literal may contain designators, just like 

a designated initializer, and it may fail to provide full 
initialization (in which case any uninitialized elements 
default to zero). 

•  For example, the literal (int [10]){8, 6} has 10 
elements; the first two have the values 8 and 6, and the 
remaining elements have the value 0. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

72 



Chapter 9: Functions 

Compound Literals (C99) 
•  Compound literals created inside a function may 

contain arbitrary expressions, not just constants: 
 total = sum_array((int []){2 * i, i + j, j * k}, 3); 

•  A compound literal is an lvalue, so the values of 
its elements can be changed. 

•  If desired, a compound literal can be made “read-
only” by adding the word const to its type: 

 (const int []){5, 4} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

73 



Chapter 9: Functions 

The return Statement 
•  A non-void function must use the return 

statement to specify what value it will return. 
•  The return statement has the form 
 return expression ; 

•  The expression is often just a constant or variable: 
 return 0; 
 return status; 

•  More complex expressions are possible: 
 return n >= 0 ? n : 0; 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

74 



Chapter 9: Functions 

The return Statement 
•  If the type of the expression in a return 

statement doesn’t match the function’s return 
type, the expression will be implicitly converted to 
the return type. 
–  If a function returns an int, but the return statement 

contains a double expression, the value of the 
expression is converted to int. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

75 



Chapter 9: Functions 

The return Statement 
•  return statements may appear in functions 

whose return type is void, provided that no 
expression is given: 

 return;  /* return in a void function */ 

•  Example: 
 void print_int(int i) 
 { 
   if (i < 0) 
     return; 
   printf("%d", i); 
 }  

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

76 



Chapter 9: Functions 

The return Statement 
•  A return statement may appear at the end of a 
void function: 

 void print_pun(void) 
 { 
   printf("To C, or not to C: that is the question.\n"); 
   return;   /* OK, but not needed */ 
 } 

 Using return here is unnecessary. 
•  If a non-void function fails to execute a return 

statement, the behavior of the program is undefined 
if it attempts to use the function’s return value. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

77 



Chapter 9: Functions 

Program Termination 
•  Normally, the return type of main is int: 
 int main(void) 
 { 
   … 
 } 

•  Older C programs often omit main’s return type, 
taking advantage of the fact that it traditionally 
defaults to int: 

 main() 
 { 
   … 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

78 



Chapter 9: Functions 

Program Termination 
•  Omitting the return type of a function isn’t legal 

in C99, so it’s best to avoid this practice. 
•  Omitting the word void in main’s parameter list 

remains legal, but—as a matter of style—it’s best 
to include it. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

79 



Chapter 9: Functions 

Program Termination 
•  The value returned by main is a status code that 

can be tested when the program terminates. 
•  main should return 0 if the program terminates 

normally. 
•  To indicate abnormal termination, main should 

return a value other than 0. 
•  It’s good practice to make sure that every C 

program returns a status code. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

80 



Chapter 9: Functions 

The exit Function 
•  Executing a return statement in main is one 

way to terminate a program. 
•  Another is calling the exit function, which 

belongs to <stdlib.h>. 
•  The argument passed to exit has the same 

meaning as main’s return value: both indicate the 
program’s status at termination. 

•  To indicate normal termination, we’d pass 0: 
 exit(0);   /* normal termination */ 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

81 



Chapter 9: Functions 

The exit Function 
•  Since 0 is a bit cryptic, C allows us to pass 
EXIT_SUCCESS instead (the effect is the same): 

 exit(EXIT_SUCCESS); 

•  Passing EXIT_FAILURE indicates abnormal 
termination: 

 exit(EXIT_FAILURE); 

•  EXIT_SUCCESS and EXIT_FAILURE are macros 
defined in <stdlib.h>. 

•  The values of EXIT_SUCCESS and 
EXIT_FAILURE are implementation-defined; typical 
values are 0 and 1, respectively. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

82 



Chapter 9: Functions 

The exit Function 
•  The statement 
 return expression; 
 in main is equivalent to 
 exit(expression); 

•  The difference between return and exit is that 
exit causes program termination regardless of 
which function calls it. 

•  The return statement causes program 
termination only when it appears in the main 
function. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

83 



Chapter 9: Functions 

Recursion 
•  A function is recursive if it calls itself. 
•  The following function computes n! recursively, 

using the formula n! = n × (n – 1)!: 
 int fact(int n) 
 { 
   if (n <= 1)  
     return 1; 
   else 
     return n * fact(n - 1); 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

84 



Chapter 9: Functions 

•  To see how recursion works, let’s trace the 
execution of the statement 

 i = fact(3); 

 fact(3) finds that 3 is not less than or equal to 1, so it calls 
   fact(2), which finds that 2 is not less than or equal to 1, so 

 it calls 
     fact(1), which finds that 1 is less than or equal to 1, so it 

 returns 1, causing 
   fact(2) to return 2 × 1 = 2, causing 
 fact(3) to return 3 × 2 = 6. 

Recursion 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

85 



Chapter 9: Functions 

Recursion 
•  The following recursive function computes xn, 

using the formula xn = x × xn–1. 
 int power(int x, int n) 
 { 
   if (n == 0) 
     return 1; 
   else 
     return x * power(x, n - 1); 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

86 



Chapter 9: Functions 

Recursion 
•  We can condense the power function by putting a 

conditional expression in the return statement: 
 int power(int x, int n) 
 { 
   return n == 0 ? 1 : x * power(x, n - 1); 
 } 

•  Both fact and power are careful to test a 
“termination condition” as soon as they’re called. 

•  All recursive functions need some kind of 
termination condition in order to prevent infinite 
recursion. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

87 



Chapter 9: Functions 

The Quicksort Algorithm 
•  Recursion is most helpful for sophisticated 

algorithms that require a function to call itself two 
or more times. 

•  Recursion often arises as a result of an algorithm 
design technique known as divide-and-conquer, in 
which a large problem is divided into smaller 
pieces that are then tackled by the same algorithm.  

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

88 



Chapter 9: Functions 

•  A classic example of divide-and-conquer can be 
found in the popular Quicksort algorithm. 

•  Assume that the array to be sorted is indexed from 
1 to n. 

 Quicksort algorithm 
1. Choose an array element e (the “partitioning element”), 

then rearrange the array so that elements 1, …, i – 1 are 
less than or equal to e, element i contains e, and elements i 
+ 1, …, n are greater than or equal to e. 

2. Sort elements 1, …, i – 1 by using Quicksort recursively. 
3. Sort elements i + 1, …, n by using Quicksort recursively.   

The Quicksort Algorithm 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

89 



Chapter 9: Functions 

The Quicksort Algorithm 
•  Step 1 of the Quicksort algorithm is obviously 

critical. 
•  There are various methods to partition an array. 
•  We’ll use a technique that’s easy to understand 

but not particularly efficient. 
•  The algorithm relies on two “markers” named low 

and high, which keep track of positions within the 
array. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

90 



Chapter 9: Functions 

The Quicksort Algorithm 
•  Initially, low points to the first element; high points to the last. 
•  We copy the first element (the partitioning element) into a 

temporary location, leaving a “hole” in the array. 
•  Next, we move high across the array from right to left until it 

points to an element that’s smaller than the partitioning 
element. 

•  We then copy the element into the hole that low points to, which 
creates a new hole (pointed to by high). 

•  We now move low from left to right, looking for an element 
that’s larger than the partitioning element. When we find one, 
we copy it into the hole that high points to. 

•  The process repeats until low and high meet at a hole. 
•  Finally, we copy the partitioning element into the hole. Copyright © 2008 W. W. Norton & Company. 

All rights reserved. 
91 



Chapter 9: Functions 

The Quicksort Algorithm 
•  Example of partitioning an array: 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

92 



Chapter 9: Functions 

The Quicksort Algorithm 
•  By the final figure, all elements to the left of the 

partitioning element are less than or equal to 12, 
and all elements to the right are greater than or 
equal to 12. 

•  Now that the array has been partitioned, we can 
use Quicksort recursively to sort the first four 
elements of the array (10, 3, 6, and 7) and the last 
two (15 and 18). 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

93 



Chapter 9: Functions 

Program: Quicksort 
•  Let’s develop a recursive function named quicksort  

that uses the Quicksort algorithm to sort an array of 
integers. 

•  The qsort.c program reads 10 numbers into an array, 
calls quicksort to sort the array, then prints the  
elements in the array: 

 Enter 10 numbers to be sorted: 9 16 47 82 4 66 12 3 25 51 
 In sorted order: 3 4 9 12 16 25 47 51 66 82 

•  The code for partitioning the array is in a separate function 
named split.  

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

94 



Chapter 9: Functions 

qsort.c 
  

/* Sorts an array of integers using Quicksort algorithm */ 
  
#include <stdio.h> 
  
#define N 10 
  
void quicksort(int a[], int low, int high); 
int split(int a[], int low, int high); 
  
int main(void) 
{ 
  int a[N], i; 
  
  printf("Enter %d numbers to be sorted: ", N); 
  for (i = 0; i < N; i++) 
    scanf("%d", &a[i]); 
  quicksort(a, 0, N - 1); 
  
  printf("In sorted order: "); 
  for (i = 0; i < N; i++) 
    printf("%d ", a[i]); 
  printf("\n"); 
  
  return 0; 
} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

95 



Chapter 9: Functions 

void quicksort(int a[], int low, int high) 
{ 
  int middle; 
  
  if (low >= high) return; 
  middle = split(a, low, high); 
  quicksort(a, low, middle - 1); 
  quicksort(a, middle + 1, high); 
} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

96 



Chapter 9: Functions 

int split(int a[], int low, int high) 
{ 
  int part_element = a[low]; 
  
  for (;;) { 
    while (low < high && part_element <= a[high]) 
      high--; 
    if (low >= high) break; 
    a[low++] = a[high]; 
  
    while (low < high && a[low] <= part_element) 
      low++; 
    if (low >= high) break; 
    a[high--] = a[low]; 
  } 
  
  a[high] = part_element; 
  return high; 
} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

97 



Chapter 9: Functions 

Program: Quicksort 
•  Ways to improve the program’s performance: 

–  Improve the partitioning algorithm. 
–  Use a different method to sort small arrays. 
–  Make Quicksort nonrecursive. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

98 


