
Chapter 11: Pointers 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

1 

Chapter 11 

Pointers 



Chapter 11: Pointers 

Pointer Variables 
•  The first step in understanding pointers is 

visualizing what they represent at the machine 
level. 

•  In most modern computers, main memory is 
divided into bytes, with each byte capable of 
storing eight bits of information: 

•  Each byte has a unique address. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

2 



Chapter 11: Pointers 

Pointer Variables 
•  If there are n bytes in memory, we can think of 

addresses as numbers that range from 0 to n – 1: 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

3 



Chapter 11: Pointers 

Pointer Variables 
•  Each variable in a program occupies one or more 

bytes of memory. 
•  The address of the first byte is said to be the 

address of the variable. 
•  In the following figure, the address of the variable 
i is 2000: 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

4 



Chapter 11: Pointers 

Pointer Variables 
•  Addresses can be stored in special pointer 

variables. 
•  When we store the address of a variable i in the 

pointer variable p, we say that p “points to” i. 
•  A graphical representation: 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

5 



Chapter 11: Pointers 

Declaring Pointer Variables 
•  When a pointer variable is declared, its name must 

be preceded by an asterisk: 
 int *p; 

•  p is a pointer variable capable of pointing to 
objects of type int. 

•  We use the term object instead of variable since p 
might point to an area of memory that doesn’t 
belong to a variable. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

6 



Chapter 11: Pointers 

Declaring Pointer Variables 
•  Pointer variables can appear in declarations along with 

other variables: 
 int i, j, a[10], b[20], *p, *q; 

•  C requires that every pointer variable point only to 
objects of a particular type (the referenced type): 

 int *p;     /* points only to integers   */ 
 double *q;  /* points only to doubles    */ 
 char *r;    /* points only to characters */ 

•  There are no restrictions on what the referenced type 
may be. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

7 



Chapter 11: Pointers 

The Address and Indirection Operators 
•  C provides a pair of operators designed 

specifically for use with pointers. 
–  To find the address of a variable, we use the & (address) 

operator. 
–  To gain access to the object that a pointer points to, we 

use the * (indirection) operator. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

8 



Chapter 11: Pointers 

The Address Operator 
•  Declaring a pointer variable sets aside space for a 

pointer but doesn’t make it point to an object: 
 int *p;  /* points nowhere in particular */ 

•  It’s crucial to initialize p before we use it. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

9 



Chapter 11: Pointers 

The Address Operator 
•  One way to initialize a pointer variable is to assign 

it the address of a variable: 
 int i, *p; 
 … 
 p = &i; 

•  Assigning the address of i to the variable p makes 
p point to i: 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

10 



Chapter 11: Pointers 

The Address Operator 
•  It’s also possible to initialize a pointer variable at 

the time it’s declared: 
 int i; 
 int *p = &i; 

•  The declaration of i can even be combined with 
the declaration of p: 

 int i, *p = &i; 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

11 



Chapter 11: Pointers 

The Indirection Operator 
•  Once a pointer variable points to an object, we can 

use the * (indirection) operator to access what’s 
stored in the object. 

•  If p points to i, we can print the value of i as 
follows: 

 printf("%d\n", *p); 

•  Applying & to a variable produces a pointer to the 
variable. Applying * to the pointer takes us back 
to the original variable: 

 j = *&i;   /* same as j = i; */ 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

12 



Chapter 11: Pointers 

The Indirection Operator 
•  As long as p points to i, *p is an alias for i. 

–  *p has the same value as i. 
–  Changing the value of *p changes the value of i. 

•  The example on the next slide illustrates the 
equivalence of *p and i. 

   

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

13 



Chapter 11: Pointers 

The Indirection Operator 
 p = &i; 

 
 
 i = 1; 

 
 
 printf("%d\n", i);    /* prints 1 */ 
 printf("%d\n", *p);   /* prints 1 */ 
 *p = 2; 

 
 
 printf("%d\n", i);    /* prints 2 */ 
 printf("%d\n", *p);   /* prints 2 */ 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

14 



Chapter 11: Pointers 

The Indirection Operator 
•  Applying the indirection operator to an 

uninitialized pointer variable causes undefined 
behavior: 

 int *p; 
 printf("%d", *p);   /*** WRONG ***/ 

•  Assigning a value to *p is particularly dangerous: 
 int *p; 
 *p = 1;   /*** WRONG ***/ 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

15 



Chapter 11: Pointers 

Pointer Assignment 
•  C allows the use of the assignment operator to 

copy pointers of the same type. 
•  Assume that the following declaration is in effect: 
 int i, j, *p, *q; 

•  Example of pointer assignment: 
 p = &i; 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

16 



Chapter 11: Pointers 

Pointer Assignment 
•  Another example of pointer assignment: 
 q = p; 

 q now points to the same place as p: 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

17 



Chapter 11: Pointers 

Pointer Assignment 
•  If p and q both point to i, we can change i by 

assigning a new value to either *p or *q: 
 *p = 1; 

 
 
 
 
 *q = 2; 

 
 
 
 

•  Any number of pointer variables may point to the 
same object. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

18 



Chapter 11: Pointers 

Pointer Assignment 
•  Be careful not to confuse 
 q = p; 

 with 
 *q = *p; 

•  The first statement is a pointer assignment, but the 
second is not. 

•  The example on the next slide shows the effect of 
the second statement. 

  

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

19 



Chapter 11: Pointers 

Pointer Assignment 
 p = &i; 
 q = &j; 
 i = 1; 
 
 
 
 
 *q = *p; 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

20 



Chapter 11: Pointers 

Pointers as Arguments 
•  In Chapter 9, we tried—and failed—to write a 
decompose function that could modify its 
arguments. 

•  By passing a pointer to a variable instead of the 
value of the variable, decompose can be fixed. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

21 



Chapter 11: Pointers 

Pointers as Arguments 
•  New definition of decompose: 
 void decompose(double x, long *int_part, 
                double *frac_part) 
 { 
   *int_part = (long) x; 
   *frac_part = x - *int_part; 
 } 

•  Possible prototypes for decompose: 
 void decompose(double x, long *int_part, 
                double *frac_part); 

 void decompose(double, long *, double *); 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

22 



Chapter 11: Pointers 

Pointers as Arguments 
•  A call of decompose: 
 decompose(3.14159, &i, &d); 

•  As a result of the call, int_part points to i and 
frac_part points to d: 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

23 



Chapter 11: Pointers 

Pointers as Arguments 
•  The first assignment in the body of decompose 

converts the value of x to type long and stores it 
in the object pointed to by int_part: 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

24 



Chapter 11: Pointers 

Pointers as Arguments 
•  The second assignment stores x - *int_part 

into the object that frac_part points to: 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

25 



Chapter 11: Pointers 

Pointers as Arguments 
•  Arguments in calls of scanf are pointers: 
 int i; 
 … 
 scanf("%d", &i); 

 Without the &, scanf would be supplied with the 
value of i. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

26 



Chapter 11: Pointers 

Pointers as Arguments 
•  Although scanf’s arguments must be pointers, 

it’s not always true that every argument needs the 
& operator: 

 int i, *p; 
 … 
 p = &i; 
 scanf("%d", p); 

•  Using the & operator in the call would be wrong: 
 scanf("%d", &p);   /*** WRONG ***/ 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

27 



Chapter 11: Pointers 

Pointers as Arguments 
•  Failing to pass a pointer to a function when one is expected 

can have disastrous results. 
•  A call of decompose in which the & operator is missing: 
 decompose(3.14159, i, d); 

•  When decompose stores values in *int_part and 
*frac_part, it will attempt to change unknown memory 
locations instead of modifying i and d. 

•  If we’ve provided a prototype for decompose, the 
compiler will detect the error. 

•  In the case of scanf, however, failing to pass pointers 
may go undetected. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

28 



Chapter 11: Pointers 

Program: Finding the Largest and 
Smallest Elements in an Array 

•  The max_min.c program uses a function named max_min 
to find the largest and smallest elements in an array. 

•  Prototype for max_min: 
 void max_min(int a[], int n, int *max, int *min); 

•  Example call of max_min: 
 max_min(b, N, &big, &small); 

•  When max_min finds the largest element in b, it stores the 
value in big by assigning it to *max.  

•  max_min stores the smallest element of b in small by 
assigning it to *min. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

29 



Chapter 11: Pointers 

Program: Finding the Largest and 
Smallest Elements in an Array 

•  max_min.c will read 10 numbers into an array, pass 
it to the max_min function, and print the results: 

 Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31 
 Largest: 102 
 Smallest: 7 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

30 



Chapter 11: Pointers 

maxmin.c 
  

/* Finds the largest and smallest elements in an array */ 
  
#include <stdio.h> 
  
#define N 10 
  
void max_min(int a[], int n, int *max, int *min); 
  
int main(void) 
{ 
  int b[N], i, big, small; 
  
  printf("Enter %d numbers: ", N); 
  for (i = 0; i < N; i++)  
    scanf("%d", &b[i]); 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

31 



Chapter 11: Pointers 

  max_min(b, N, &big, &small); 
  
  printf("Largest: %d\n", big); 
  printf("Smallest: %d\n", small); 
  
  return 0; 
} 
 
void max_min(int a[], int n, int *max, int *min) 
{ 
  int i; 
  
  *max = *min = a[0]; 
  for (i = 1; i < n; i++) { 
    if (a[i] > *max) 
      *max = a[i]; 
    else if (a[i] < *min) 
      *min = a[i]; 
  } 
} 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

32 



Chapter 11: Pointers 

Using const to Protect Arguments 
•  When an argument is a pointer to a variable x, we 

normally assume that x will be modified: 
 f(&x); 

•  It’s possible, though, that f merely needs to 
examine the value of x, not change it. 

•  The reason for the pointer might be efficiency: 
passing the value of a variable can waste time and 
space if the variable requires a large amount of 
storage. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

33 



Chapter 11: Pointers 

Using const to Protect Arguments 
•  We can use const to document that a function 

won’t change an object whose address is passed to 
the function. 

•  const goes in the parameter’s declaration, just 
before the specification of its type: 

 void f(const int *p) 
 { 
   *p = 0;   /*** WRONG ***/ 
 } 

 Attempting to modify *p is an error that the 
compiler will detect. 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

34 



Chapter 11: Pointers 

Pointers as Return Values 
•  Functions are allowed to return pointers: 
 int *max(int *a, int *b) 
 { 
   if (*a > *b) 
     return a; 
   else 
     return b; 
 } 

•  A call of the max function: 
 int *p, i, j; 
 … 
 p = max(&i, &j); 

 After the call, p points to either i or j. 
 Copyright © 2008 W. W. Norton & Company. 

All rights reserved. 
35 



Chapter 11: Pointers 

Pointers as Return Values 
•  Although max returns one of the pointers passed to it 

as an argument, that’s not the only possibility. 
•  A function could also return a pointer to an external 

variable or to a static local variable. 
•  Never return a pointer to an automatic local variable: 
 int *f(void) 
 { 
   int i; 
   … 
   return &i; 
 } 

 The variable i won’t exist after f returns. 
 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

36 



Chapter 11: Pointers 

Pointers as Return Values 
•  Pointers can point to array elements. 
•  If a is an array, then &a[i] is a pointer to 

element i of a. 
•  It’s sometimes useful for a function to return a 

pointer to one of the elements in an array. 
•  A function that returns a pointer to the middle 

element of a, assuming that a has n elements: 
 int *find_middle(int a[], int n) { 
   return &a[n/2]; 
 } 

Copyright © 2008 W. W. Norton & Company. 
All rights reserved. 

37 


