
Chapter 12: Pointers and Arrays

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 12

Pointers and Arrays

Chapter 12: Pointers and Arrays

Introduction
•  C allows us to perform arithmetic—addition and

subtraction—on pointers to array elements.
•  This leads to an alternative way of processing

arrays in which pointers take the place of array
subscripts.

•  The relationship between pointers and arrays in C
is a close one.

•  Understanding this relationship is critical for
mastering C.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 12: Pointers and Arrays

Pointer Arithmetic
•  Chapter 11 showed that pointers can point to array

elements:
 int a[10], *p;
 p = &a[0];

•  A graphical representation:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 12: Pointers and Arrays

Pointer Arithmetic
•  We can now access a[0] through p; for example,

we can store the value 5 in a[0] by writing
 *p = 5;

•  An updated picture:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 12: Pointers and Arrays

Pointer Arithmetic
•  If p points to an element of an array a, the other

elements of a can be accessed by performing
pointer arithmetic (or address arithmetic) on p.

•  C supports three (and only three) forms of pointer
arithmetic:
–  Adding an integer to a pointer
–  Subtracting an integer from a pointer
–  Subtracting one pointer from another

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 12: Pointers and Arrays

Adding an Integer to a Pointer
•  Adding an integer j to a pointer p yields a pointer

to the element j places after the one that p points
to.

•  More precisely, if p points to the array element a
[i], then p + j points to a[i+j].

•  Assume that the following declarations are in
effect:

 int a[10], *p, *q, i;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 12: Pointers and Arrays

Adding an Integer to a Pointer
•  Example of pointer addition:
 p = &a[2];

 q = p + 3;

 p += 6;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 12: Pointers and Arrays

Subtracting an Integer from a Pointer
•  If p points to a[i], then p - j points to a[i-j].
•  Example:
 p = &a[8];

 q = p - 3;

 p -= 6;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 12: Pointers and Arrays

Subtracting One Pointer from Another
•  When one pointer is subtracted from another, the result

is the distance (measured in array elements) between the
pointers.

•  If p points to a[i] and q points to a[j], then p - q is
equal to i - j.

•  Example:
 p = &a[5];
 q = &a[1];

 i = p - q; /* i is 4 */
 i = q - p; /* i is -4 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 12: Pointers and Arrays

Subtracting One Pointer from Another
•  Operations that cause undefined behavior:

–  Performing arithmetic on a pointer that doesn’t point to
an array element

–  Subtracting pointers unless both point to elements of
the same array

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 12: Pointers and Arrays

Comparing Pointers
•  Pointers can be compared using the relational

operators (<, <=, >, >=) and the equality operators
(== and !=).
–  Using relational operators is meaningful only for pointers to

elements of the same array.

•  The outcome of the comparison depends on the
relative positions of the two elements in the array.

•  After the assignments
 p = &a[5];
 q = &a[1];

 the value of p <= q is 0 and the value of p >= q is 1.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 12: Pointers and Arrays

Pointers to Compound Literals (C99)
•  It’s legal for a pointer to point to an element

within an array created by a compound literal:
 int *p = (int []){3, 0, 3, 4, 1};

•  Using a compound literal saves us the trouble of
first declaring an array variable and then making p
point to the first element of that array:

 int a[] = {3, 0, 3, 4, 1};

 int *p = &a[0];

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 12: Pointers and Arrays

Using Pointers for Array Processing
•  Pointer arithmetic allows us to visit the elements

of an array by repeatedly incrementing a pointer
variable.

•  A loop that sums the elements of an array a:
 #define N 10
 …
 int a[N], sum, *p;
 …
 sum = 0;
 for (p = &a[0]; p < &a[N]; p++)
 sum += *p;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 12: Pointers and Arrays

Using Pointers for Array Processing
 At the end of the first iteration:

 At the end of the second iteration:

 At the end of the third iteration:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 12: Pointers and Arrays

Using Pointers for Array Processing
•  The condition p < &a[N] in the for statement

deserves special mention.
•  It’s legal to apply the address operator to a[N],

even though this element doesn’t exist.
•  Pointer arithmetic may save execution time.
•  However, some C compilers produce better code

for loops that rely on subscripting.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 12: Pointers and Arrays

Combining the * and ++ Operators
•  C programmers often combine the * (indirection)

and ++ operators.
•  A statement that modifies an array element and

then advances to the next element:
 a[i++] = j;

•  The corresponding pointer version:
 *p++ = j;

•  Because the postfix version of ++ takes
precedence over *, the compiler sees this as

 *(p++) = j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 12: Pointers and Arrays

Combining the * and ++ Operators
•  Possible combinations of * and ++:

 Expression Meaning
 *p++ or *(p++) Value of expression is *p before increment;
 increment p later
 (*p)++ Value of expression is *p before increment;
 increment *p later
 *++p or *(++p) Increment p first;
 value of expression is *p after increment
 ++*p or ++(*p) Increment *p first;
 value of expression is *p after increment

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 12: Pointers and Arrays

Combining the * and ++ Operators
•  The most common combination of * and ++ is *p
++, which is handy in loops.

•  Instead of writing
 for (p = &a[0]; p < &a[N]; p++)
 sum += *p;

 to sum the elements of the array a, we could write
 p = &a[0];
 while (p < &a[N])
 sum += *p++;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 12: Pointers and Arrays

Combining the * and ++ Operators
•  The * and -- operators mix in the same way as *

and ++.
•  For an application that combines * and --, let’s

return to the stack example of Chapter 10.
•  The original version of the stack relied on an

integer variable named top to keep track of the
“top-of-stack” position in the contents array.

•  Let’s replace top by a pointer variable that points
initially to element 0 of the contents array:

 int *top_ptr = &contents[0];
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 12: Pointers and Arrays

Combining the * and ++ Operators
•  The new push and pop functions:
 void push(int i)
 {
 if (is_full())
 stack_overflow();
 else
 *top_ptr++ = i;
 }

 int pop(void)
 {
 if (is_empty())
 stack_underflow();
 else
 return *--top_ptr;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 12: Pointers and Arrays

Using an Array Name as a Pointer
•  Pointer arithmetic is one way in which arrays and

pointers are related.
•  Another key relationship:

 The name of an array can be used as a pointer to
the first element in the array.

•  This relationship simplifies pointer arithmetic and
makes both arrays and pointers more versatile.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 12: Pointers and Arrays

Using an Array Name as a Pointer
•  Suppose that a is declared as follows:
 int a[10];

•  Examples of using a as a pointer:
 a = 7; / stores 7 in a[0] */
 (a+1) = 12; / stores 12 in a[1] */

•  In general, a + i is the same as &a[i].
–  Both represent a pointer to element i of a.

•  Also, *(a+i) is equivalent to a[i].
–  Both represent element i itself.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 12: Pointers and Arrays

Using an Array Name as a Pointer
•  The fact that an array name can serve as a pointer

makes it easier to write loops that step through an
array.

•  Original loop:
 for (p = &a[0]; p < &a[N]; p++)
 sum += *p;

•  Simplified version:
 for (p = a; p < a + N; p++)
 sum += *p;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 12: Pointers and Arrays

Using an Array Name as a Pointer
•  Although an array name can be used as a pointer,

it’s not possible to assign it a new value.
•  Attempting to make it point elsewhere is an error:
 while (*a != 0)
 a++; /*** WRONG ***/

•  This is no great loss; we can always copy a into a
pointer variable, then change the pointer variable:

 p = a;
 while (*p != 0)
 p++;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 12: Pointers and Arrays

Program: Reversing a Series
of Numbers (Revisited)

•  The reverse.c program of Chapter 8 reads 10
numbers, then writes the numbers in reverse order.

•  The original program stores the numbers in an
array, with subscripting used to access elements of
the array.

•  reverse3.c is a new version of the program in
which subscripting has been replaced with pointer
arithmetic.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 12: Pointers and Arrays

reverse3.c

/* Reverses a series of numbers (pointer version) */

#include <stdio.h>

#define N 10

int main(void)
{
 int a[N], *p;

 printf("Enter %d numbers: ", N);
 for (p = a; p < a + N; p++)
 scanf("%d", p);

 printf("In reverse order:");
 for (p = a + N - 1; p >= a; p--)
 printf(" %d", *p);
 printf("\n");

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
•  When passed to a function, an array name is treated as a pointer.
•  Example:
 int find_largest(int a[], int n)
 {
 int i, max;

 max = a[0];
 for (i = 1; i < n; i++)
 if (a[i] > max)
 max = a[i];
 return max;
 }

•  A call of find_largest:
 largest = find_largest(b, N);

 This call causes a pointer to the first element of b to be assigned
to a; the array itself isn’t copied.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
•  The fact that an array argument is treated as a

pointer has some important consequences.
•  Consequence 1: When an ordinary variable is

passed to a function, its value is copied; any
changes to the corresponding parameter don’t
affect the variable.

•  In contrast, an array used as an argument isn’t
protected against change.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
•  For example, the following function modifies an

array by storing zero into each of its elements:
 void store_zeros(int a[], int n)
 {
 int i;

 for (i = 0; i < n; i++)
 a[i] = 0;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
•  To indicate that an array parameter won’t be

changed, we can include the word const in its
declaration:

 int find_largest(const int a[], int n)
 {
 …
 }

•  If const is present, the compiler will check that
no assignment to an element of a appears in the
body of find_largest.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
•  Consequence 2: The time required to pass an array

to a function doesn’t depend on the size of the
array.

•  There’s no penalty for passing a large array, since
no copy of the array is made.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
•  Consequence 3: An array parameter can be

declared as a pointer if desired.
•  find_largest could be defined as follows:
 int find_largest(int *a, int n)
 {
 …
 }

•  Declaring a to be a pointer is equivalent to
declaring it to be an array; the compiler treats the
declarations as though they were identical.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
•  Although declaring a parameter to be an array is

the same as declaring it to be a pointer, the same
isn’t true for a variable.

•  The following declaration causes the compiler to
set aside space for 10 integers:

 int a[10];

•  The following declaration causes the compiler to
allocate space for a pointer variable:

 int *a;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
•  In the latter case, a is not an array; attempting to

use it as an array can have disastrous results.
•  For example, the assignment
 *a = 0; /*** WRONG ***/

 will store 0 where a is pointing.
•  Since we don’t know where a is pointing, the

effect on the program is undefined.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 12: Pointers and Arrays

Array Arguments (Revisited)
•  Consequence 4: A function with an array

parameter can be passed an array “slice”—a
sequence of consecutive elements.

•  An example that applies find_largest to
elements 5 through 14 of an array b:

 largest = find_largest(&b[5], 10);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 12: Pointers and Arrays

Using a Pointer as an Array Name
•  C allows us to subscript a pointer as though it

were an array name:
 #define N 10
 …
 int a[N], i, sum = 0, *p = a;
 …
 for (i = 0; i < N; i++)
 sum += p[i];

 The compiler treats p[i] as *(p+i).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 12: Pointers and Arrays

Pointers and Multidimensional Arrays
•  Just as pointers can point to elements of one-

dimensional arrays, they can also point to
elements of multidimensional arrays.

•  This section explores common techniques for
using pointers to process the elements of
multidimensional arrays.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 12: Pointers and Arrays

Processing the Elements
of a Multidimensional Array

•  Chapter 8 showed that C stores two-dimensional
arrays in row-major order.

•  Layout of an array with r rows:

•  If p initially points to the element in row 0, column 0,
we can visit every element in the array by
incrementing p repeatedly.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 12: Pointers and Arrays

Processing the Elements
of a Multidimensional Array

•  Consider the problem of initializing all elements of the following
array to zero:

 int a[NUM_ROWS][NUM_COLS];

•  The obvious technique would be to use nested for loops:
 int row, col;
 …
 for (row = 0; row < NUM_ROWS; row++)
 for (col = 0; col < NUM_COLS; col++)
 a[row][col] = 0;

•  If we view a as a one-dimensional array of integers, a single loop
is sufficient:

 int *p;
 …
 for (p = &a[0][0]; p <= &a[NUM_ROWS-1][NUM_COLS-1]; p++)
 *p = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 12: Pointers and Arrays

Processing the Elements
of a Multidimensional Array

•  Although treating a two-dimensional array as one-
dimensional may seem like cheating, it works with
most C compilers.

•  Techniques like this one definitely hurt program
readability, but—at least with some older
compilers—produce a compensating increase in
efficiency.

•  With many modern compilers, though, there’s
often little or no speed advantage.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 12: Pointers and Arrays

Processing the Rows
of a Multidimensional Array

•  A pointer variable p can also be used for
processing the elements in just one row of a two-
dimensional array.

•  To visit the elements of row i, we’d initialize p to
point to element 0 in row i in the array a:

 p = &a[i][0];

 or we could simply write
 p = a[i];

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 12: Pointers and Arrays

Processing the Rows
of a Multidimensional Array

•  For any two-dimensional array a, the expression a
[i] is a pointer to the first element in row i.

•  To see why this works, recall that a[i] is
equivalent to *(a + i).

•  Thus, &a[i][0] is the same as &(*(a[i] + 0)),
which is equivalent to &*a[i].

•  This is the same as a[i], since the & and *
operators cancel.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 12: Pointers and Arrays

Processing the Rows
of a Multidimensional Array

•  A loop that clears row i of the array a:
 int a[NUM_ROWS][NUM_COLS], *p, i;
 …
 for (p = a[i]; p < a[i] + NUM_COLS; p++)
 *p = 0;

•  Since a[i] is a pointer to row i of the array a, we
can pass a[i] to a function that’s expecting a one-
dimensional array as its argument.

•  In other words, a function that’s designed to work
with one-dimensional arrays will also work with a
row belonging to a two-dimensional array.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 12: Pointers and Arrays

Processing the Rows
of a Multidimensional Array

•  Consider find_largest, which was originally
designed to find the largest element of a one-
dimensional array.

•  We can just as easily use find_largest to
determine the largest element in row i of the two-
dimensional array a:

 largest = find_largest(a[i], NUM_COLS);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 12: Pointers and Arrays

Processing the Columns
of a Multidimensional Array

•  Processing the elements in a column of a two-
dimensional array isn’t as easy, because arrays are
stored by row, not by column.

•  A loop that clears column i of the array a:
 int a[NUM_ROWS][NUM_COLS], (*p)[NUM_COLS], i;
 …
 for (p = &a[0]; p < &a[NUM_ROWS]; p++)
 (*p)[i] = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 12: Pointers and Arrays

Using the Name of a
Multidimensional Array as a Pointer

•  The name of any array can be used as a pointer, regardless
of how many dimensions it has, but some care is required.

•  Example:
 int a[NUM_ROWS][NUM_COLS];

 a is not a pointer to a[0][0]; instead, it’s a pointer to a
[0].

•  C regards a as a one-dimensional array whose elements are
one-dimensional arrays.

•  When used as a pointer, a has type int (*)[NUM_COLS]
(pointer to an integer array of length NUM_COLS).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 12: Pointers and Arrays

Using the Name of a
Multidimensional Array as a Pointer

•  Knowing that a points to a[0] is useful for
simplifying loops that process the elements of a
two-dimensional array.

•  Instead of writing
 for (p = &a[0]; p < &a[NUM_ROWS]; p++)
 (*p)[i] = 0;

 to clear column i of the array a, we can write
 for (p = a; p < a + NUM_ROWS; p++)
 (*p)[i] = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 12: Pointers and Arrays

Using the Name of a
Multidimensional Array as a Pointer

•  We can “trick” a function into thinking that a
multidimensional array is really one-dimensional.

•  A first attempt at using using find_largest to find the
largest element in a:

 largest = find_largest(a, NUM_ROWS * NUM_COLS);
 /* WRONG */

 This an error, because the type of a is int (*)[NUM_COLS]
but find_largest is expecting an argument of type int *.

•  The correct call:
 largest = find_largest(a[0], NUM_ROWS * NUM_COLS);

 a[0] points to element 0 in row 0, and it has type int *
(after conversion by the compiler).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 12: Pointers and Arrays

Pointers and Variable-Length Arrays (C99)
•  Pointers are allowed to point to elements of

variable-length arrays (VLAs).
•  An ordinary pointer variable would be used to

point to an element of a one-dimensional VLA:
 void f(int n)
 {
 int a[n], *p;
 p = a;
 …
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 12: Pointers and Arrays

Pointers and Variable-Length Arrays (C99)
•  When the VLA has more than one dimension, the

type of the pointer depends on the length of each
dimension except for the first.

•  A two-dimensional example:
 void f(int m, int n)
 {
 int a[m][n], (*p)[n];
 p = a;
 …
 }

 Since the type of p depends on n, which isn’t
constant, p is said to have a variably modified type.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 12: Pointers and Arrays

Pointers and Variable-Length Arrays (C99)
•  The validity of an assignment such as p = a can’t

always be determined by the compiler.
•  The following code will compile but is correct

only if m and n are equal:
 int a[m][n], (*p)[m];
 p = a;

•  If m is not equal to n, any subsequent use of p will
cause undefined behavior.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 12: Pointers and Arrays

Pointers and Variable-Length Arrays (C99)
•  Variably modified types are subject to certain

restrictions.
•  The most important restriction: the declaration of

a variably modified type must be inside the body
of a function or in a function prototype.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 12: Pointers and Arrays

Pointers and Variable-Length Arrays (C99)
•  Pointer arithmetic works with VLAs.
•  A two-dimensional VLA:
 int a[m][n];

•  A pointer capable of pointing to a row of a:
 int (*p)[n];

•  A loop that clears column i of a:
 for (p = a; p < a + m; p++)
 (*p)[i] = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

