Chapter 12

Pointers and Arrays

C PROGRANMMING :

A Modern Approach secono eoirion

Introduction

C allows us to perform arithmetic—addition and
subtraction—on pointers to array elements.

This leads to an alternative way of processing
arrays 1n which pointers take the place of array
subscripts.

The relationship between pointers and arrays in C
1s a close one.

Understanding this relationship 1s critical for
mastering C.

C PROGRANMMING 2

A Modern Approach stcono eoimion

Pointer Arithmetic

* Chapter 11 showed that pointers can point to array
elements:

int af[l1l0], *p;
p = &al0];

* A graphical representation:

C PROGRANMMING 3

A Modern Approach secono eoirion

Pointer Arithmetic

 We can now access a [0] through p; for example,
we can store the value 5 1n a [0] by writing

*]_O = 5;
* An updated picture:

C PROGRANMMING 4

A Modern Approach secono eoirion

Pointer Arithmetic

* If p points to an element of an array a, the other
elements of a can be accessed by performing
pointer arithmetic (or address arithmetic) on p.

* C supports three (and only three) forms of pointer
arithmetic:
— Adding an integer to a pointer
— Subtracting an integer from a pointer
— Subtracting one pointer from another

C PROGRANMMING 5

A Modern Approach stcono eoimion

Adding an Integer to a Pointer

* Adding an integer j to a pointer p yields a pointer
to the element J places after the one that p points
to.

* More precisely, if p points to the array element a
[i],thenp + j pointstoa [i+7].

* Assume that the following declarations are in
effect:

int a[l0], *p, *q, 1;

C PROGRANMMING 6

A Modern Approach secono eoirion

Adding an Integer to a Pointer

« Example of pointer addition:

p = &al2]; b

C PROGRANMMING 7

A Modern Approach stcono eoimion

Subtracting an Integer from a Pointer

e fppointstoa[i],thenp — j pointstoa[i-7].

« Example:

P
p = &al[8];
q ! P
qa=p - 3;
0 1 2 3 4 5 6 7 8 9
p q
p -= 0;
0 1 2 3 4 5 6 7 8 9
C PROGRANMMING g

A Modern Approach stcono eoimion

Subtracting One Pointer from Another

* When one pointer is subtracted from another, the result
is the distance (measured in array elements) between the
pointers.

e [fppomtstoa[i] and gpointstoa[j],thenp - gis
equal to i - 7.

« Example:
p = &al5]; <[o[
q = &all]; :I T

i=p - qg; /* 1 is 4 */
i=qgq-p; /*idis -4 */
C PROGRANMMING 9

A Modern Approach secono eoirion

Subtracting One Pointer from Another

* Operations that cause undefined behavior:

— Performing arithmetic on a pointer that doesn’ t point to
an array element

— Subtracting pointers unless both point to elements of
the same array

C PROGRANMMING 10

A Modern Approach stcono eoimion

Comparing Pointers

* Pointers can be compared using the relational
operators (<, <=, >, >=) and the equality operators
(==and ! =).

— Using relational operators 1s meaningful only for pointers to
elements of the same array.

* The outcome of the comparison depends on the
relative positions of the two elements 1n the array.

» After the assignments

P &al[d];
g &afll];

the value of p <= g 1s 0 and the value of p >= g is 1.

C PROGRANMMING 11

A Modern Approach stcono eoimion

Pointers to Compound Literals (C99)

» It s legal for a pointer to point to an element
within an array created by a compound literal:
int *p = (int []){3, 0, 3, 4, 1};

* Using a compound literal saves us the trouble of
first declaring an array variable and then making p
point to the first element of that array:
int al] = {3, 0, 3, 4, 1};
int *p = &al[0];

C PROGRANMMING 12

A Modern Approach secono eoirion

Using Pointers for Array Processing

* Pointer arithmetic allows us to visit the elements
of an array by repeatedly incrementing a pointer
variable.

* A loop that sums the elements of an array a:
#define N 10

int a[N], sum, *p;

sum = 0;
for (p = &al0]; p < &a[N]; p++)
sum += *p;

C PROGRANMMING 13

A Modern Approach secono eoirion

Using Pointers for Array Processing

At the end of the first iteration:

At the end of the second iteration:

At the end of the third iteration:

C PROGRANMMING 14

A Modern Approach stcono eoimion

p

sum

sum

sum

11 (34 |82 | 7 |64 |98 |47 |18 |79 |20
0 1 2 3 4 5 6 7 8 9
11
p
11|34 |82 | 7 |64 |98 |47 |18 |79 |20
0 1 2 3 4 5 6 7 8 9
45
p
11|34 |82 | 7 | 64|98 (47 |18 |79 |20
0 1 2 3 4 5 6 7 8 9
127

Using Pointers for Array Processing

The condition p < &a [N] 1n the for statement
deserves special mention.

It s legal to apply the address operator to a [N],
even though this element doesn’ t exist.

Pointer arithmetic may save execution time.

However, some C compilers produce better code
for loops that rely on subscripting.

C PROGRANMMING 15

A Modern Approach secono eoirion

Combining the * and ++ Operators

C programmers often combine the * (indirection)
and ++ operators.

A statement that modifies an array element and
then advances to the next element:

ali++] = 733

The corresponding pointer version:

*p++ = 35

Because the postfix version of ++ takes
precedence over *, the compiler sees this as

*(pt++) = J;

C PROGRANMMING 16

A Modern Approach stcono eoimion

Combining the * and ++ Operators

 Possible combinations of * and ++:

Expression

Meaning

*p++ or * (p++) Value of expression i1s *p before increment;

(*p) ++

*++p or * (++p)

++*p or ++ (*p)

increment p later

Value of expression is *p before increment;
increment *p later

Increment p first;
value of expression 1s *p after increment

Increment *p first;
value of expression 1s *p after increment

C PROGRANMMING 17

A Modern Approach

EEEEEEEEEEEEE

Combining the * and ++ Operators

 The most common combination of * and ++ 1S *p
++, which 1s handy 1n loops.
 Instead of writing

for (p = &a[0]; p < &al[N]; pt+)
sum += *p;

to sum the elements of the array a, we could write

p = &al0];
while (p < &al[N])
sum += *p++;

C PROGRANMMING 18

A Modern Approach secono eoirion

Combining the * and ++ Operators

The * and —- operators mix in the same way as *
and ++.

For an application that combines * and -—, let’ s
return to the stack example of Chapter 10.

The original version of the stack relied on an
integer variable named top to keep track of the
“top-of-stack” position in the contents array.

Let’ s replace top by a pointer variable that points
initially to element O of the contents array:

int *top ptr = &contents[0];
C PROGRANMMING T:

A Modern Approach stcono eoimion

Combining the * and ++ Operators

 The new push and pop functions:
volid push (int 1)

{
if (is full())
stack overflow();
else

*top ptr++ = 1;
}

int pop(void)
{
if (is empty())
stack underflow();
else
return *--top ptr;

}
C PROGRAMMING 20

A Modern Approach stcono eoimion

Using an Array Name as a Pointer

» Pointer arithmetic 1s one way 1n which arrays and
pointers are related.

* Another key relationship:

The name of an array can be used as a pointer to
the first element in the array.

* This relationship simplifies pointer arithmetic and
makes both arrays and pointers more versatile.

C PROGRANMMING 21

A Modern Approach secono eoirion

Using an Array Name as a Pointer

Suppose that a 1s declared as follows:
int al[l0];
Examples of using a as a pointer:

a = 7; / stores 7 in al[0] */
(a+l) = 12; / stores 12 in al[l] */

In general, a + i 1s the same as &a[i].
— Both represent a pointer to element i of a.
Also, * (a+1) 1sequivalenttoa[i].

— Both represent element i itself.

C PROGRANMMING 22

A Modern Approach secono eoirion

Using an Array Name as a Pointer

* The fact that an array name can serve as a pointer
makes 1t easier to write loops that step through an
array.

* Original loop:
for (p = &al[0]; p < &a[N]; pt++)

sum += *p;
« Simplified version:

for (p = a; p < a + N; pt+)
sum += *p;

C PROGRANMMING 23

A Modern Approach secono eoirion

Using an Array Name as a Pointer

* Although an array name can be used as a pointer,
it" s not possible to assign it a new value.

* Attempting to make 1t point elsewhere 1s an error:
while (*a != 0)
at+; /*** WRONG ***/
* This 1s no great loss; we can always copy a 1nto a
pointer variable, then change the pointer variable:
p = 4y
while (*p != 0)
p++;

C PROGRAMMING 24

A Modern Approach secono eoirion

Program: Reversing a Series
of Numbers (Revisited)

 The reverse. c program of Chapter 8 reads 10
numbers, then writes the numbers in reverse order.

* The original program stores the numbers 1n an
array, with subscripting used to access elements of
the array.

 reverse3.c 1s anew version of the program in
which subscripting has been replaced with pointer
arithmetic.

C PROGRANMMING 25

A Modern Approach secono eoirion

reverse3.cC

/* Reverses a series of numbers
#include <stdio.h>

#define N 10

int main (void)

{ int a[N], *p;

printf ("Enter %d numbers: ",
for (p = a; p < a + N; p++)
scanf ("%d", p);

printf ("In reverse order:");

(pointer version)

N) ;

for (p = a + N - 1; p >= a; p—--)

printf (" %d", *p);
printf ("\n");

return 0;

C PROGRANMMING 26

A Modern Approach secono eoirion

*/

Array Arguments (Revisited)

 When passed to a function, an array name is treated as a pointer.
« Example:

int find largest(int a[], 1int n)

{

int 1, max;

max = al[0];
for (1 = 1; i < n; 1i++)
if (al[i] > max)
max = al[i];

return max;

}
* Acallof find largest:
largest = find largest (b, N);

This call causes a pointer to the first element of b to be assigned
to a; the array itself isn’ t copied.

C PROGRANMMING 27

A Modern Approach stcono eoimion

Array Arguments (Revisited)

* The fact that an array argument is treated as a
pointer has some important consequences.

* (Consequence 1: When an ordinary variable 1s
passed to a function, its value 1s copied; any
changes to the corresponding parameter don’ t
affect the variable.

 In contrast, an array used as an argument isn’ t
protected against change.

C PROGRANMMING 28

A Modern Approach stcono eoimion

Array Arguments (Revisited)

* For example, the following function modifies an
array by storing zero into each of its elements:

vold store zeros(int al[], 1nt n)

{

int 1;

for (1 = 0; 1 < n; 1++)
ali] = 0;

C PROGRANMMING 29

A Modern Approach stcono eoimion

Array Arguments (Revisited)

» To indicate that an array parameter won' t be
changed, we can include the word const 1n its

declaration:

int find largest (const int al], 1nt n)

{

}

e If const 1s present, the compiler will check that
no assignment to an element of a appears in the
body of find largest.

C PROGRANMMING 30

A Modern Approach secono eoirion

Array Arguments (Revisited)

* Consequence 2: The time required to pass an array
to a function doesn’ t depend on the size of the

array.
 There’ s no penalty for passing a large array, since
no copy of the array 1s made.

C PROGRANMMING 31

A Modern Approach secono eoirion

Array Arguments (Revisited)

* (Consequence 3. An array parameter can be
declared as a pointer 1f desired.

« find largest could be defined as follows:

int find largest(int *a, 1nt n)

{

}

* Declaring a to be a pointer 1s equivalent to
declaring 1t to be an array; the compiler treats the
declarations as though they were 1dentical.

C PROGRANMMING 32

A Modern Approach stcono eoimion

Array Arguments (Revisited)

Although declaring a parameter to be an array 1s
the same as declaring it to be a pointer, the same
isn’ t true for a variable.

The following declaration causes the compiler to
set aside space for 10 integers:

int al[l0];

The following declaration causes the compiler to
allocate space for a pointer variable:

int *a;

C PROGRANMMING 33

A Modern Approach stcono eoimion

Array Arguments (Revisited)

 In the latter case, a 1s not an array; attempting to
use 1t as an array can have disastrous results.

» For example, the assignment
*a = 0; /*** WRONG ***/
will store 0 where a 1s pointing.

* Since we don’ t know where a is pointing, the
effect on the program is undefined.

C PROGRANMMING 34

A Modern Approach secono eoirion

Array Arguments (Revisited)

* Consequence 4: A function with an array
parameter can be passed an array “slice’ —a
sequence of consecutive elements.

* An example that applies find largest to
elements 5 through 14 of an array b:
largest = find largest(&b[5], 10);

C PROGRANMMING 35

A Modern Approach secono eoirion

Using a Pointer as an Array Name

* (C allows us to subscript a pointer as though 1t
were an array name:

#define N 10
int a[N], 1, sum = 0, *p = a;

for (1 = 0; 1 < N; 1++)
sum += p[i];

The compiler treats p[i] as * (p+1i).

C PROGRANMMING 36

A Modern Approach stcono eoimion

Pointers and Multidimensional Arrays

 Just as pointers can point to elements of one-
dimensional arrays, they can also point to
clements of multidimensional arrays.

* This section explores common techniques for
using pointers to process the elements of
multidimensional arrays.

C PROGRAMMING 37

A Modern Approach secono eoirion

Processing the Elements
of a Multidimensional Array

e Chapter 8 showed that C stores two-dimensional
arrays 1in row-major order.

e Layout of an array with » rows:
row O row 1 row r— 1

 If p imitially points to the element in row 0, column 0,
we can visit every element in the array by
incrementing p repeatedly.

C PROGRANMMING 38

A Modern Approach stcono eoimion

Processing the Elements
of a Multidimensional Array

« Consider the problem of initializing all elements of the following
array to zero:

int a[NUM ROWS] [NUM COLS];

* The obvious technique would be to use nested for loops:

int row, col;

for (row = 0; row < NUM ROWS; row++)
for (col = 0; col < NUM COLS; col++)
alrow] [col] = 0;

« If we view a as a one-dimensional array of integers, a single loop

is sufficient:

int *p;

for (p = &al[0][0]; p <= &a[NUM ROWS-1] [NUM COLS-1]; p++)
C PROGRANMMING 39

A Modern Approach stcono eoimion

Processing the Elements
of a Multidimensional Array

* Although treating a two-dimensional array as one-
dimensional may seem like cheating, it works with
most C compilers.

* Techniques like this one definitely hurt program
readability, but—at least with some older
compilers—produce a compensating increase in
efficiency.

 With many modern compilers, though, there’ s
often little or no speed advantage.

C PROGRANMMING 40

A Modern Approach secono eoirion

Processing the Rows
of a Multidimensional Array

* A pointer variable p can also be used for
processing the elements in just one row of a two-
dimensional array.

 To visit the elements of row i, we’ d initialize p to
point to element 0 in row i 1n the array a:

p = &a[1][0];
or we could simply write

p = alil;

C PROGRANMMING 41

A Modern Approach secono eoirion

Processing the Rows
of a Multidimensional Array

* For any two-dimensional array a, the expression a
[i] 1s a pointer to the first element in row 1.

e To see why this works, recall that a [i] 1s
equivalentto * (a + 1i).

e Thus, &a[1][0] i1sthesameas & (* (a[i] +0)),
which 1s equivalent to &*a [i].

e This1s the same as a[i], since the & and *
operators cancel.

C PROGRANMMING 42

A Modern Approach secono eoirion

Processing the Rows
of a Multidimensional Array

* A loop that clears row i of the array a:
int a[NUM ROWS] [NUM COLS], *p, i;

for (p = al1]l; p < al[i1] + NUM COLS; p++)
*p = 0;

e Since a[i] 1s a pointer to row i of the array a, we
can pass a [i] to a function that’ s expecting a one-

dimensional array as its argument.

e In other words, a function that s designed to work
with one-dimensional arrays will also work with a
row belonging to a two-dimensional array.

C PROGRAMMING 43

A Modern Approach secono eoirion

Processing the Rows
of a Multidimensional Array

* Consider £ind largest, which was originally
designed to find the largest element of a one-
dimensional array.

* We can just as easily use find largest to
determine the largest element in row i of the two-
dimensional array a:

largest = find largest(af[i], NUM COLS) ;

C PROGRANMMING 44

A Modern Approach secono eoirion

Processing the Columns
of a Multidimensional Array

* Processing the elements 1n a column of a two-
dimensional array isn’ t as easy, because arrays are
stored by row, not by column.

* A loop that clears column i of the array a:
int a[NUM ROWS] [NUM COLS], (*p) [NUM COLS], i;

for (p = &al0]; p < &a[NUM ROWS]; p++)
(*r) [1] = 07
C PROGRANMMING 45

A Modern Approach stcono eoimion

Using the Name of a
Multidimensional Array as a Pointer

* The name of any array can be used as a pointer, regardless
of how many dimensions it has, but some care 1s required.

« Example:
int a[NUM ROWS] [NUM COLS];
a is not a pointer to a [0] [0]; instead, it’ s a pointer to a
[O].

* (Cregards a as a one-dimensional array whose elements are
one-dimensional arrays.

* When used as a pointer, a has type int (*) [NUM COLS]
(pointer to an integer array of length NUM COLS).

C PROGRANMMING 46

A Modern Approach stcono eoimion

Using the Name of a
Multidimensional Array as a Pointer

Knowing that a points to a [0] 1s useful for
simplifying loops that process the elements of a
two-dimensional array.

Instead of writing

for (p = &al[0]; p < &a[NUM ROWS]; p++)
(*p) [1] = 07

to clear column 1 of the array a, we can write

for (p = a; p < a + NUM ROWS; p++)
(*p) [1] = 07

C PROGRANMMING 47

A Modern Approach stcono eoimion

Using the Name of a
Multidimensional Array as a Pointer

We can “trick” a function into thinking that a
multidimensional array 1s really one-dimensional.

A first attempt at using using find largest to find the
largest element in a:

largest = find largest(a, NUM ROWS * NUM COLS) ;
/* WRONG */

This an error, because the type of a 1s int (*) [NUM COLS]
but find largest is expecting an argument of type int *.
The correct call:

largest = find largest(a[0], NUM ROWS * NUM COLS) ;

a [0] points to element 0 in row 0, and 1t has type int *
(after conversion by the compiler).

C PROGRANMMING 48

A Modern Approach stcono eoimion

Pointers and Variable-Length Arrays (C99)

* Pointers are allowed to point to elements of
variable-length arrays (VLAS).

* An ordinary pointer variable would be used to
point to an element of a one-dimensional VLA

volid f (int n)

{

int aln], *p;
P = ay

C PROGRANMMING 49

A Modern Approach stcono eoimion

Pointers and Variable-Length Arrays (C99)

 When the VLA has more than one dimension, the
type of the pointer depends on the length of each
dimension except for the first.

* A two-dimensional example:

vold f(1nt m, 1nt n)

{
int a[m] [n], (*p)[n];

p = ay
J

Since the type of p depends on n, which isn’ t
constant, p 1s said to have a variably modified type.

C PROGRANMMING 50

A Modern Approach secono eoirion

Pointers and Variable-Length Arrays (C99)

» The validity of an assignment such as p = a can’ t
always be determined by the compiler.

* The following code will compile but 1s correct
only 1if m and n are equal:
int a[m][n], (*p) [m];
p = a;

* Ifm is not equal to n, any subsequent use of p will
cause undefined behavior.

C PROGRANMMING 51

A Modern Approach secono eoirion

Pointers and Variable-Length Arrays (C99)

* Variably modified types are subject to certain
restrictions.

* The most important restriction: the declaration of
a variably modified type must be inside the body
of a function or 1n a function prototype.

C PROGRANMMING 52

A Modern Approach secono eoirion

Pointers and Variable-Length Arrays (C99)

* Pointer arithmetic works with VLAs.

* A two-dimensional VLA:
int a[m] [n];

* A pointer capable of pointing to a row of a:
int (*p) [n];

* A loop that clears column i of a:

for (p = a; p < a + m; ptt)
(*p) [1] = 0;

C PROGRANMMING 53

A Modern Approach stcono eoimion

