
Chapter 16: Structures, Unions, and Enumerations

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 16

Structures, Unions,
and Enumerations

Chapter 16: Structures, Unions, and Enumerations

Structure Variables
•  The properties of a structure are different from

those of an array.
–  The elements of a structure (its members) aren’t

required to have the same type.
–  The members of a structure have names; to select a

particular member, we specify its name, not its position.
•  In some languages, structures are called records,

and members are known as fields.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 16: Structures, Unions, and Enumerations

Declaring Structure Variables
•  A structure is a logical choice for storing a

collection of related data items.
•  A declaration of two structure variables that store

information about parts in a warehouse:
 struct {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 } part1, part2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 16: Structures, Unions, and Enumerations

Declaring Structure Variables
•  The members of a structure are

stored in memory in the order in
which they’re declared.

•  Appearance of part1
•  Assumptions:

–  part1 is located at address 2000.
–  Integers occupy four bytes.
–  NAME_LEN has the value 25.
–  There are no gaps between the

members.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 16: Structures, Unions, and Enumerations

Declaring Structure Variables
•  Abstract representations of a structure:

•  Member values will go in the boxes later.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 16: Structures, Unions, and Enumerations

Declaring Structure Variables
•  Each structure represents a new scope.
•  Any names declared in that scope won’t conflict

with other names in a program.
•  In C terminology, each structure has a separate

name space for its members.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 16: Structures, Unions, and Enumerations

Declaring Structure Variables
•  For example, the following declarations can

appear in the same program:
 struct {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 } part1, part2;

 struct {
 char name[NAME_LEN+1];
 int number;
 char sex;
 } employee1, employee2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 16: Structures, Unions, and Enumerations

Initializing Structure Variables
•  A structure declaration may include an initializer:
 struct {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 } part1 = {528, "Disk drive", 10},
 part2 = {914, "Printer cable", 5};

•  Appearance of part1 after initialization:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 16: Structures, Unions, and Enumerations

Initializing Structure Variables
•  Structure initializers follow rules similar to those

for array initializers.
•  Expressions used in a structure initializer must be

constant. (This restriction is relaxed in C99.)
•  An initializer can have fewer members than the

structure it’s initializing.
•  Any “leftover” members are given 0 as their

initial value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 16: Structures, Unions, and Enumerations

Designated Initializers (C99)
•  C99’s designated initializers can be used with

structures.
•  The initializer for part1 shown in the previous

example:
 {528, "Disk drive", 10}

•  In a designated initializer, each value would be labeled
by the name of the member that it initializes:

 {.number = 528, .name = "Disk drive", .on_hand = 10}

•  The combination of the period and the member name is
called a designator.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 16: Structures, Unions, and Enumerations

Designated Initializers (C99)
•  Designated initializers are easier to read and check

for correctness.
•  Also, values in a designated initializer don’t have

to be placed in the same order that the members
are listed in the structure.
–  The programmer doesn’t have to remember the order in

which the members were originally declared.
–  The order of the members can be changed in the future

without affecting designated initializers.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 16: Structures, Unions, and Enumerations

Designated Initializers (C99)
•  Not all values listed in a designated initializer

need be prefixed by a designator.
•  Example:
 {.number = 528, "Disk drive", .on_hand = 10}

 The compiler assumes that "Disk drive"
initializes the member that follows number in the
structure.

•  Any members that the initializer fails to account
for are set to zero.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures
•  To access a member within a structure, we write

the name of the structure first, then a period, then
the name of the member.

•  Statements that display the values of part1’s
members:

 printf("Part number: %d\n", part1.number);
 printf("Part name: %s\n", part1.name);
 printf("Quantity on hand: %d\n", part1.on_hand);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures
•  The members of a structure are lvalues.
•  They can appear on the left side of an assignment

or as the operand in an increment or decrement
expression:

 part1.number = 258;
 /* changes part1's part number */
 part1.on_hand++;
 /* increments part1's quantity on hand */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures
•  The period used to access a structure member is

actually a C operator.
•  It takes precedence over nearly all other operators.
•  Example:
 scanf("%d", &part1.on_hand);

 The . operator takes precedence over the &
operator, so & computes the address of
part1.on_hand.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures
•  The other major structure operation is assignment:
 part2 = part1;

•  The effect of this statement is to copy
part1.number into part2.number,
part1.name into part2.name, and so on.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures
•  Arrays can’t be copied using the = operator, but

an array embedded within a structure is copied
when the enclosing structure is copied.

•  Some programmers exploit this property by
creating “dummy” structures to enclose arrays that
will be copied later:

 struct { int a[10]; } a1, a2;
 a1 = a2;
 /* legal, since a1 and a2 are structures */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 16: Structures, Unions, and Enumerations

Operations on Structures
•  The = operator can be used only with structures of

compatible types.
•  Two structures declared at the same time (as
part1 and part2 were) are compatible.

•  Structures declared using the same “structure tag”
or the same type name are also compatible.

•  Other than assignment, C provides no operations
on entire structures.

•  In particular, the == and != operators can’t be
used with structures.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 16: Structures, Unions, and Enumerations

Structure Types
•  Suppose that a program needs to declare several

structure variables with identical members.
•  We need a name that represents a type of structure,

not a particular structure variable.
•  Ways to name a structure:

–  Declare a “structure tag”
–  Use typedef to define a type name

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 16: Structures, Unions, and Enumerations

Declaring a Structure Tag
•  A structure tag is a name used to identify a

particular kind of structure.
•  The declaration of a structure tag named part:
 struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 };

•  Note that a semicolon must follow the right brace.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 16: Structures, Unions, and Enumerations

Declaring a Structure Tag
•  The part tag can be used to declare variables:
 struct part part1, part2;

•  We can’t drop the word struct:
 part part1, part2; /*** WRONG ***/

 part isn’t a type name; without the word
struct, it is meaningless.

•  Since structure tags aren’t recognized unless
preceded by the word struct, they don’t
conflict with other names used in a program.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 16: Structures, Unions, and Enumerations

Declaring a Structure Tag
•  The declaration of a structure tag can be combined

with the declaration of structure variables:
 struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 } part1, part2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 16: Structures, Unions, and Enumerations

Declaring a Structure Tag
•  All structures declared to have type struct
part are compatible with one another:

 struct part part1 = {528, "Disk drive", 10};
 struct part part2;

 part2 = part1;
 /* legal; both parts have the same type */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 16: Structures, Unions, and Enumerations

Defining a Structure Type
•  As an alternative to declaring a structure tag, we

can use typedef to define a genuine type name.
•  A definition of a type named Part:
 typedef struct {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 } Part;

•  Part can be used in the same way as the built-in
types:

 Part part1, part2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 16: Structures, Unions, and Enumerations

Defining a Structure Type
•  When it comes time to name a structure, we can

usually choose either to declare a structure tag or
to use typedef.

•  However, declaring a structure tag is mandatory
when the structure is to be used in a linked list
(Chapter 17).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 16: Structures, Unions, and Enumerations

Structures as Arguments and Return Values
•  Functions may have structures as arguments and

return values.
•  A function with a structure argument:
 void print_part(struct part p)
 {
 printf("Part number: %d\n", p.number);
 printf("Part name: %s\n", p.name);
 printf("Quantity on hand: %d\n", p.on_hand);
 }

•  A call of print_part:
 print_part(part1);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 16: Structures, Unions, and Enumerations

Structures as Arguments and Return Values
•  A function that returns a part structure:
 struct part build_part(int number,
 const char *name,
 int on_hand)
 {
 struct part p;

 p.number = number;
 strcpy(p.name, name);
 p.on_hand = on_hand;
 return p;
 }

•  A call of build_part:
 part1 = build_part(528, "Disk drive", 10);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 16: Structures, Unions, and Enumerations

Structures as Arguments and Return Values
•  Passing a structure to a function and returning a

structure from a function both require making a
copy of all members in the structure.

•  To avoid this overhead, it’s sometimes advisable
to pass a pointer to a structure or return a pointer
to a structure.

•  Chapter 17 gives examples of functions that have
a pointer to a structure as an argument and/or
return a pointer to a structure.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 16: Structures, Unions, and Enumerations

Structures as Arguments and Return Values
•  There are other reasons to avoid copying structures.
•  For example, the <stdio.h> header defines a type

named FILE, which is typically a structure.
•  Each FILE structure stores information about the

state of an open file and therefore must be unique in
a program.

•  Every function in <stdio.h> that opens a file
returns a pointer to a FILE structure.

•  Every function that performs an operation on an
open file requires a FILE pointer as an argument.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 16: Structures, Unions, and Enumerations

Structures as Arguments and Return Values
•  Within a function, the initializer for a structure

variable can be another structure:
 void f(struct part part1)
 {
 struct part part2 = part1;
 …
 }

•  The structure being initialized must have
automatic storage duration.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 16: Structures, Unions, and Enumerations

Compound Literals (C99)
•  Chapter 9 introduced the C99 feature known as the

compound literal.
•  A compound literal can be used to create a

structure “on the fly,” without first storing it in a
variable.

•  The resulting structure can be passed as a
parameter, returned by a function, or assigned to a
variable.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 16: Structures, Unions, and Enumerations

Compound Literals (C99)
•  A compound literal can be used to create a

structure that will be passed to a function:
 print_part((struct part) {528, "Disk drive", 10});

 The compound literal is shown in bold.
•  A compound literal can also be assigned to a variable:
 part1 = (struct part) {528, "Disk drive", 10};

•  A compound literal consists of a type name within
parentheses, followed by a set of values in braces.

•  When a compound literal represents a structure, the
type name can be a structure tag preceded by the word
struct or a typedef name.

 Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 16: Structures, Unions, and Enumerations

Compound Literals (C99)
•  A compound literal may contain designators, just

like a designated initializer:
 print_part((struct part) {.on_hand = 10,
 .name = "Disk drive",
 .number = 528});

•  A compound literal may fail to provide full
initialization, in which case any uninitialized
members default to zero.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 16: Structures, Unions, and Enumerations

Nested Arrays and Structures
•  Structures and arrays can be combined without

restriction.
•  Arrays may have structures as their elements, and

structures may contain arrays and structures as
members.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 16: Structures, Unions, and Enumerations

Nested Structures
•  Nesting one structure inside another is often

useful.
•  Suppose that person_name is the following

structure:
 struct person_name {
 char first[FIRST_NAME_LEN+1];
 char middle_initial;
 char last[LAST_NAME_LEN+1];
 };

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 16: Structures, Unions, and Enumerations

Nested Structures
•  We can use person_name as part of a larger

structure:
 struct student {
 struct person_name name;
 int id, age;
 char sex;
 } student1, student2;

•  Accessing student1’s first name, middle
initial, or last name requires two applications of
the . operator:

 strcpy(student1.name.first, "Fred");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 16: Structures, Unions, and Enumerations

Nested Structures
•  Having name be a structure makes it easier to treat

names as units of data.
•  A function that displays a name could be passed one
person_name argument instead of three arguments:

 display_name(student1.name);

•  Copying the information from a person_name
structure to the name member of a student structure
would take one assignment instead of three:

 struct person_name new_name;
 …
 student1.name = new_name;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 16: Structures, Unions, and Enumerations

Arrays of Structures
•  One of the most common combinations of arrays

and structures is an array whose elements are
structures.

•  This kind of array can serve as a simple database.
•  An array of part structures capable of storing

information about 100 parts:
 struct part inventory[100];

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 16: Structures, Unions, and Enumerations

Arrays of Structures
•  Accessing a part in the array is done by using

subscripting:
 print_part(inventory[i]);

•  Accessing a member within a part structure
requires a combination of subscripting and member
selection:

 inventory[i].number = 883;

•  Accessing a single character in a part name requires
subscripting, followed by selection, followed by
subscripting:

 inventory[i].name[0] = '\0';

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 16: Structures, Unions, and Enumerations

Initializing an Array of Structures
•  Initializing an array of structures is done in much

the same way as initializing a multidimensional
array.

•  Each structure has its own brace-enclosed
initializer; the array initializer wraps another set of
braces around the structure initializers.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 16: Structures, Unions, and Enumerations

Initializing an Array of Structures
•  One reason for initializing an array of structures is

that it contains information that won’t change
during program execution.

•  Example: an array that contains country codes
used when making international telephone calls.

•  The elements of the array will be structures that
store the name of a country along with its code:

 struct dialing_code {
 char *country;
 int code;
 };

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 16: Structures, Unions, and Enumerations

Initializing an Array of Structures
const struct dialing_code country_codes[] =
 {{"Argentina", 54}, {"Bangladesh", 880},
 {"Brazil", 55}, {"Burma (Myanmar)", 95},
 {"China", 86}, {"Colombia", 57},
 {"Congo, Dem. Rep. of", 243}, {"Egypt", 20},
 {"Ethiopia", 251}, {"France", 33},
 {"Germany", 49}, {"India", 91},
 {"Indonesia", 62}, {"Iran", 98},
 {"Italy", 39}, {"Japan", 81},
 {"Mexico", 52}, {"Nigeria", 234},
 {"Pakistan", 92}, {"Philippines", 63},
 {"Poland", 48}, {"Russia", 7},
 {"South Africa", 27}, {"South Korea", 82},
 {"Spain", 34}, {"Sudan", 249},
 {"Thailand", 66}, {"Turkey", 90},
 {"Ukraine", 380}, {"United Kingdom", 44},
 {"United States", 1}, {"Vietnam", 84}};

•  The inner braces around each structure value are optional.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 16: Structures, Unions, and Enumerations

Initializing an Array of Structures
•  C99’s designated initializers allow an item to

have more than one designator.
•  A declaration of the inventory array that uses a

designated initializer to create a single part:
 struct part inventory[100] =
 {[0].number = 528, [0].on_hand = 10,
 [0].name[0] = '\0'};

 The first two items in the initializer use two
designators; the last item uses three.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database
•  The inventory.c program illustrates how

nested arrays and structures are used in practice.
•  The program tracks parts stored in a warehouse.
•  Information about the parts is stored in an array of

structures.
•  Contents of each structure:

–  Part number
–  Name
–  Quantity

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database
•  Operations supported by the program:

–  Add a new part number, part name, and initial quantity
on hand

–  Given a part number, print the name of the part and the
current quantity on hand

–  Given a part number, change the quantity on hand
–  Print a table showing all information in the database
–  Terminate program execution

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database
•  The codes i (insert), s (search), u (update), p (print),

and q (quit) will be used to represent these operations.
•  A session with the program:
 Enter operation code: i
 Enter part number: 528
 Enter part name: Disk drive
 Enter quantity on hand: 10

 Enter operation code: s
 Enter part number: 528
 Part name: Disk drive
 Quantity on hand: 10

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database
 Enter operation code: s
 Enter part number: 914
 Part not found.

 Enter operation code: i
 Enter part number: 914
 Enter part name: Printer cable
 Enter quantity on hand: 5

 Enter operation code: u
 Enter part number: 528
 Enter change in quantity on hand: -2

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database
 Enter operation code: s
 Enter part number: 528
 Part name: Disk drive
 Quantity on hand: 8

 Enter operation code: p
 Part Number Part Name Quantity on Hand
 528 Disk drive 8
 914 Printer cable 5

 Enter operation code: q

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database
•  The program will store information about each

part in a structure.
•  The structures will be stored in an array named
inventory.

•  A variable named num_parts will keep track of
the number of parts currently stored in the array.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database
•  An outline of the program’s main loop:
 for (;;) {
 prompt user to enter operation code;
 read code;
 switch (code) {
 case 'i': perform insert operation; break;
 case 's': perform search operation; break;
 case 'u': perform update operation; break;
 case 'p': perform print operation; break;
 case 'q': terminate program;
 default: print error message;
 }
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database
•  Separate functions will perform the insert, search,

update, and print operations.
•  Since the functions will all need access to
inventory and num_parts, these variables will
be external.

•  The program is split into three files:
–  inventory.c (the bulk of the program)
–  readline.h (contains the prototype for the
read_line function)

–  readline.c (contains the definition of read_line)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 16: Structures, Unions, and Enumerations

inventory.c

/* Maintains a parts database (array version) */

#include <stdio.h>
#include "readline.h"

#define NAME_LEN 25
#define MAX_PARTS 100

struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} inventory[MAX_PARTS];

int num_parts = 0; /* number of parts currently stored */

int find_part(int number);
void insert(void);
void search(void);
void update(void);
void print(void);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 16: Structures, Unions, and Enumerations

/**
 * main: Prompts the user to enter an operation code, *
 * then calls a function to perform the requested *
 * action. Repeats until the user enters the *
 * command 'q'. Prints an error message if the user *
 * enters an illegal code. *
 **/
int main(void)
{
 char code;
 for (;;) {
 printf("Enter operation code: ");
 scanf(" %c", &code);
 while (getchar() != '\n') /* skips to end of line */
 ;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 16: Structures, Unions, and Enumerations

 switch (code) {
 case 'i': insert();
 break;
 case 's': search();
 break;
 case 'u': update();
 break;
 case 'p': print();
 break;
 case 'q': return 0;
 default: printf("Illegal code\n");
 }
 printf("\n");
 }
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 16: Structures, Unions, and Enumerations

/**
 * find_part: Looks up a part number in the inventory *
 * array. Returns the array index if the part *
 * number is found; otherwise, returns -1. *
 **/
int find_part(int number)
{
 int i;

 for (i = 0; i < num_parts; i++)
 if (inventory[i].number == number)
 return i;
 return -1;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 16: Structures, Unions, and Enumerations

/**
 * insert: Prompts the user for information about a new *
 * part and then inserts the part into the *
 * database. Prints an error message and returns *
 * prematurely if the part already exists or the *
 * database is full. *
 **/
void insert(void)
{
 int part_number;

 if (num_parts == MAX_PARTS) {
 printf("Database is full; can't add more parts.\n");
 return;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

Chapter 16: Structures, Unions, and Enumerations

 printf("Enter part number: ");
 scanf("%d", &part_number);
 if (find_part(part_number) >= 0) {
 printf("Part already exists.\n");
 return;
 }

 inventory[num_parts].number = part_number;
 printf("Enter part name: ");
 read_line(inventory[num_parts].name, NAME_LEN);
 printf("Enter quantity on hand: ");
 scanf("%d", &inventory[num_parts].on_hand);
 num_parts++;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 16: Structures, Unions, and Enumerations

/**
 * search: Prompts the user to enter a part number, then *
 * looks up the part in the database. If the part *
 * exists, prints the name and quantity on hand; *
 * if not, prints an error message. *
 **/
void search(void)
{
 int i, number;

 printf("Enter part number: ");
 scanf("%d", &number);
 i = find_part(number);
 if (i >= 0) {
 printf("Part name: %s\n", inventory[i].name);
 printf("Quantity on hand: %d\n", inventory[i].on_hand);
 } else
 printf("Part not found.\n");
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 16: Structures, Unions, and Enumerations

/**
 * update: Prompts the user to enter a part number. *
 * Prints an error message if the part doesn't *
 * exist; otherwise, prompts the user to enter *
 * change in quantity on hand and updates the *
 * database. *
 **/
void update(void)
{
 int i, number, change;

 printf("Enter part number: ");
 scanf("%d", &number);
 i = find_part(number);
 if (i >= 0) {
 printf("Enter change in quantity on hand: ");
 scanf("%d", &change);
 inventory[i].on_hand += change;
 } else
 printf("Part not found.\n");
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 16: Structures, Unions, and Enumerations

/**
 * print: Prints a listing of all parts in the database, *
 * showing the part number, part name, and *
 * quantity on hand. Parts are printed in the *
 * order in which they were entered into the *
 * database. *
 **/
void print(void)
{
 int i;

 printf("Part Number Part Name "
 "Quantity on Hand\n");
 for (i = 0; i < num_parts; i++)
 printf("%7d %-25s%11d\n", inventory[i].number,
 inventory[i].name, inventory[i].on_hand);
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

60

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database
•  The version of read_line in Chapter 13 won’t

work properly in the current program.
•  Consider what happens when the user inserts a part:
 Enter part number: 528
 Enter part name: Disk drive

•  The user presses the Enter key after entering the part
number, leaving an invisible new-line character that
the program must read.

•  When scanf reads the part number, it consumes
the 5, 2, and 8, but leaves the new-line character
unread.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

61

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database
•  If we try to read the part name using the original
read_line function, it will encounter the new-
line character immediately and stop reading.

•  This problem is common when numerical input is
followed by character input.

•  One solution is to write a version of read_line
that skips white-space characters before it begins
storing characters.

•  This solves the new-line problem and also allows us
to avoid storing blanks that precede the part name.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

62

Chapter 16: Structures, Unions, and Enumerations

readline.h

#ifndef READLINE_H
#define READLINE_H

/**
 * read_line: Skips leading white-space characters, then *
 * reads the remainder of the input line and *
 * stores it in str. Truncates the line if its *
 * length exceeds n. Returns the number of *
 * characters stored. *
 **/
int read_line(char str[], int n);

#endif

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

63

Chapter 16: Structures, Unions, and Enumerations

readline.c

#include <ctype.h>
#include <stdio.h>
#include "readline.h"

int read_line(char str[], int n)
{
 int ch, i = 0;

 while (isspace(ch = getchar()))
 ;
 while (ch != '\n' && ch != EOF) {
 if (i < n)
 str[i++] = ch;
 ch = getchar();
 }
 str[i] = '\0';
 return i;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

64

Chapter 16: Structures, Unions, and Enumerations

Unions
•  A union, like a structure, consists of one or more

members, possibly of different types.
•  The compiler allocates only enough space for the

largest of the members, which overlay each other
within this space.

•  Assigning a new value to one member alters the
values of the other members as well.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

65

Chapter 16: Structures, Unions, and Enumerations

Unions
•  An example of a union variable:
 union {
 int i;
 double d;
 } u;

•  The declaration of a union closely resembles a
structure declaration:

 struct {
 int i;
 double d;
 } s;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

66

Chapter 16: Structures, Unions, and Enumerations

Unions
•  The structure s and the

union u differ in just one
way.

•  The members of s are
stored at different
addresses in memory.

•  The members of u are
stored at the same address.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

67

Chapter 16: Structures, Unions, and Enumerations

Unions
•  Members of a union are accessed in the same way

as members of a structure:
 u.i = 82;

 u.d = 74.8;

•  Changing one member of a union alters any value
previously stored in any of the other members.
–  Storing a value in u.d causes any value previously

stored in u.i to be lost.
–  Changing u.i corrupts u.d.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

68

Chapter 16: Structures, Unions, and Enumerations

Unions
•  The properties of unions are almost identical to the

properties of structures.
•  We can declare union tags and union types in the

same way we declare structure tags and types.
•  Like structures, unions can be copied using the =

operator, passed to functions, and returned by
functions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

69

Chapter 16: Structures, Unions, and Enumerations

Unions
•  Only the first member of a union can be given an

initial value.
•  How to initialize the i member of u to 0:
 union {
 int i;
 double d;
 } u = {0};

•  The expression inside the braces must be constant.
(The rules are slightly different in C99.)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

70

Chapter 16: Structures, Unions, and Enumerations

Unions
•  Designated initializers can also be used with

unions.
•  A designated initializer allows us to specify which

member of a union should be initialized:
 union {
 int i;
 double d;
 } u = {.d = 10.0};

•  Only one member can be initialized, but it doesn’t
have to be the first one.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

71

Chapter 16: Structures, Unions, and Enumerations

Unions
•  Applications for unions:

–  Saving space
–  Building mixed data structures
–  Viewing storage in different ways (discussed in Chapter

20)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

72

Chapter 16: Structures, Unions, and Enumerations

Using Unions to Save Space
•  Unions can be used to save space in structures.
•  Suppose that we’re designing a structure that will

contain information about an item that’s sold
through a gift catalog.

•  Each item has a stock number and a price, as well
as other information that depends on the type of
the item:

 Books: Title, author, number of pages
 Mugs: Design
 Shirts: Design, colors available, sizes available

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

73

Chapter 16: Structures, Unions, and Enumerations

Using Unions to Save Space
•  A first attempt at designing the catalog_item

structure:
 struct catalog_item {
 int stock_number;
 double price;
 int item_type;
 char title[TITLE_LEN+1];
 char author[AUTHOR_LEN+1];
 int num_pages;
 char design[DESIGN_LEN+1];
 int colors;
 int sizes;
 };

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

74

Chapter 16: Structures, Unions, and Enumerations

Using Unions to Save Space
•  The item_type member would have one of the

values BOOK, MUG, or SHIRT.
•  The colors and sizes members would store

encoded combinations of colors and sizes.
•  This structure wastes space, since only part of the

information in the structure is common to all items
in the catalog.

•  By putting a union inside the catalog_item
structure, we can reduce the space required by the
structure.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

75

Chapter 16: Structures, Unions, and Enumerations

Using Unions to Save Space
struct catalog_item {
 int stock_number;
 double price;
 int item_type;
 union {
 struct {
 char title[TITLE_LEN+1];
 char author[AUTHOR_LEN+1];
 int num_pages;
 } book;
 struct {
 char design[DESIGN_LEN+1];
 } mug;
 struct {
 char design[DESIGN_LEN+1];
 int colors;
 int sizes;
 } shirt;
 } item;
};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

76

Chapter 16: Structures, Unions, and Enumerations

Using Unions to Save Space
•  If c is a catalog_item structure that represents

a book, we can print the book’s title in the
following way:

 printf("%s", c.item.book.title);

•  As this example shows, accessing a union that’s
nested inside a structure can be awkward.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

77

Chapter 16: Structures, Unions, and Enumerations

Using Unions to Save Space
•  The catalog_item structure can be used to

illustrate an interesting aspect of unions.
•  Normally, it’s not a good idea to store a value into

one member of a union and then access the data
through a different member.

•  However, there is a special case: two or more of the
members of the union are structures, and the structures
begin with one or more matching members.

•  If one of the structures is currently valid, then the
matching members in the other structures will also be
valid.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

78

Chapter 16: Structures, Unions, and Enumerations

Using Unions to Save Space
•  The union embedded in the catalog_item

structure contains three structures as members.
•  Two of these (mug and shirt) begin with a

matching member (design).
•  Now, suppose that we assign a value to one of the
design members:

 strcpy(c.item.mug.design, "Cats");

•  The design member in the other structure will be
defined and have the same value:

 printf("%s", c.item.shirt.design);
 /* prints "Cats" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

79

Chapter 16: Structures, Unions, and Enumerations

Using Unions to Build Mixed Data Structures
•  Unions can be used to create data structures that

contain a mixture of data of different types.
•  Suppose that we need an array whose elements are

a mixture of int and double values.
•  First, we define a union type whose members

represent the different kinds of data to be stored in
the array:

 typedef union {
 int i;
 double d;
 } Number;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

80

Chapter 16: Structures, Unions, and Enumerations

Using Unions to Build Mixed Data Structures
•  Next, we create an array whose elements are
Number values:

 Number number_array[1000];

•  A Number union can store either an int value or
a double value.

•  This makes it possible to store a mixture of int
and double values in number_array:

 number_array[0].i = 5;
 number_array[1].d = 8.395;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

81

Chapter 16: Structures, Unions, and Enumerations

Adding a “Tag Field” to a Union
•  There’s no easy way to tell which member of a union was

last changed and therefore contains a meaningful value.
•  Consider the problem of writing a function that displays

the value stored in a Number union:
 void print_number(Number n)
 {
 if (n contains an integer)
 printf("%d", n.i);
 else
 printf("%g", n.d);
 }

 There’s no way for print_number to determine
whether n contains an integer or a floating-point number.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

82

Chapter 16: Structures, Unions, and Enumerations

Adding a “Tag Field” to a Union
•  In order to keep track of this information, we can

embed the union within a structure that has one
other member: a “tag field” or “discriminant.”

•  The purpose of a tag field is to remind us what’s
currently stored in the union.

•  item_type served this purpose in the
catalog_item structure.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

83

Chapter 16: Structures, Unions, and Enumerations

Adding a “Tag Field” to a Union
•  The Number type as a structure with an embedded

union:
 #define INT_KIND 0
 #define DOUBLE_KIND 1

 typedef struct {
 int kind; /* tag field */
 union {
 int i;
 double d;
 } u;
 } Number;

•  The value of kind will be either INT_KIND or
DOUBLE_KIND.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

84

Chapter 16: Structures, Unions, and Enumerations

Adding a “Tag Field” to a Union
•  Each time we assign a value to a member of u,

we’ll also change kind to remind us which
member of u we modified.

•  An example that assigns a value to the i member
of u:

 n.kind = INT_KIND;
 n.u.i = 82;

 n is assumed to be a Number variable.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

85

Chapter 16: Structures, Unions, and Enumerations

Adding a “Tag Field” to a Union
•  When the number stored in a Number variable is

retrieved, kind will tell us which member of the
union was the last to be assigned a value.

•  A function that takes advantage of this capability:
 void print_number(Number n)
 {
 if (n.kind == INT_KIND)
 printf("%d", n.u.i);
 else
 printf("%g", n.u.d);
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

86

Chapter 16: Structures, Unions, and Enumerations

Enumerations
•  In many programs, we’ll need variables that have

only a small set of meaningful values.
•  A variable that stores the suit of a playing card

should have only four potential values: “clubs,”
“diamonds,” “hearts,” and “spades.”

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

87

Chapter 16: Structures, Unions, and Enumerations

Enumerations
•  A “suit” variable can be declared as an integer,

with a set of codes that represent the possible
values of the variable:

 int s; /* s will store a suit */
 …
 s = 2; /* 2 represents "hearts" */

•  Problems with this technique:
–  We can’t tell that s has only four possible values.
–  The significance of 2 isn’t apparent.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

88

Chapter 16: Structures, Unions, and Enumerations

Enumerations
•  Using macros to define a suit “type” and names

for the various suits is a step in the right direction:
 #define SUIT int
 #define CLUBS 0
 #define DIAMONDS 1
 #define HEARTS 2
 #define SPADES 3

•  An updated version of the previous example:
 SUIT s;
 …
 s = HEARTS;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

89

Chapter 16: Structures, Unions, and Enumerations

Enumerations
•  Problems with this technique:

–  There’s no indication to someone reading the program
that the macros represent values of the same “type.”

–  If the number of possible values is more than a few,
defining a separate macro for each will be tedious.

–  The names CLUBS, DIAMONDS, HEARTS, and
SPADES will be removed by the preprocessor, so they
won’t be available during debugging.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

90

Chapter 16: Structures, Unions, and Enumerations

Enumerations
•  C provides a special kind of type designed

specifically for variables that have a small number
of possible values.

•  An enumerated type is a type whose values are
listed (“enumerated”) by the programmer.

•  Each value must have a name (an enumeration
constant).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

91

Chapter 16: Structures, Unions, and Enumerations

Enumerations
•  Although enumerations have little in common

with structures and unions, they’re declared in a
similar way:

 enum {CLUBS, DIAMONDS, HEARTS, SPADES} s1, s2;

•  The names of enumeration constants must be
different from other identifiers declared in the
enclosing scope.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

92

Chapter 16: Structures, Unions, and Enumerations

Enumerations
•  Enumeration constants are similar to constants

created with the #define directive, but they’re
not equivalent.

•  If an enumeration is declared inside a function, its
constants won’t be visible outside the function.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

93

Chapter 16: Structures, Unions, and Enumerations

Enumeration Tags and Type Names
•  As with structures and unions, there are two ways

to name an enumeration: by declaring a tag or by
using typedef to create a genuine type name.

•  Enumeration tags resemble structure and union
tags:

 enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};

•  suit variables would be declared in the
following way:

 enum suit s1, s2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

94

Chapter 16: Structures, Unions, and Enumerations

Enumeration Tags and Type Names
•  As an alternative, we could use typedef to make
Suit a type name:

 typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit;
 Suit s1, s2;

•  In C89, using typedef to name an enumeration
is an excellent way to create a Boolean type:

 typedef enum {FALSE, TRUE} Bool;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

95

Chapter 16: Structures, Unions, and Enumerations

Enumerations as Integers
•  Behind the scenes, C treats enumeration variables

and constants as integers.
•  By default, the compiler assigns the integers 0, 1,

2, … to the constants in a particular enumeration.
•  In the suit enumeration, CLUBS, DIAMONDS,
HEARTS, and SPADES represent 0, 1, 2, and 3,
respectively.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

96

Chapter 16: Structures, Unions, and Enumerations

Enumerations as Integers
•  The programmer can choose different values for

enumeration constants:
 enum suit {CLUBS = 1, DIAMONDS = 2,
 HEARTS = 3, SPADES = 4};

•  The values of enumeration constants may be
arbitrary integers, listed in no particular order:

 enum dept {RESEARCH = 20,
 PRODUCTION = 10, SALES =
25};

•  It’s even legal for two or more enumeration
constants to have the same value.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

97

Chapter 16: Structures, Unions, and Enumerations

Enumerations as Integers
•  When no value is specified for an enumeration

constant, its value is one greater than the value of
the previous constant.

•  The first enumeration constant has the value 0 by
default.

•  Example:
 enum EGA_colors {BLACK, LT_GRAY = 7,
 DK_GRAY, WHITE = 15};

 BLACK has the value 0, LT_GRAY is 7, DK_GRAY
is 8, and WHITE is 15.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

98

Chapter 16: Structures, Unions, and Enumerations

Enumerations as Integers
•  Enumeration values can be mixed with ordinary

integers:
 int i;
 enum {CLUBS, DIAMONDS, HEARTS, SPADES} s;

 i = DIAMONDS; /* i is now 1 */
 s = 0; /* s is now 0 (CLUBS) */
 s++; /* s is now 1 (DIAMONDS) */
 i = s + 2; /* i is now 3 */

•  s is treated as a variable of some integer type.
•  CLUBS, DIAMONDS, HEARTS, and SPADES are

names for the integers 0, 1, 2, and 3.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

99

Chapter 16: Structures, Unions, and Enumerations

Enumerations as Integers
•  Although it’s convenient to be able to use an

enumeration value as an integer, it’s dangerous to
use an integer as an enumeration value.

•  For example, we might accidentally store the
number 4—which doesn’t correspond to any suit
—into s.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

100

Chapter 16: Structures, Unions, and Enumerations

Using Enumerations to Declare “Tag
Fields”

•  Enumerations are perfect for determining which
member of a union was the last to be assigned a
value.

•  In the Number structure, we can make the kind
member an enumeration instead of an int:

 typedef struct {
 enum {INT_KIND, DOUBLE_KIND} kind;
 union {
 int i;
 double d;
 } u;
 } Number;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

101

Chapter 16: Structures, Unions, and Enumerations

Using Enumerations to Declare “Tag
Fields”

•  The new structure is used in exactly the same way
as the old one.

•  Advantages of the new structure:
–  Does away with the INT_KIND and DOUBLE_KIND

macros
–  Makes it obvious that kind has only two possible

values: INT_KIND and DOUBLE_KIND

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

102

