Chapter 16

Structures, Unions,
and Enumerations

C PROGRANMMING :

A Modern Approach stcono eoimion

Structure Variables

* The properties of a structure are different from
those of an array.

— The elements of a structure (its members) aren’ t
required to have the same type.

— The members of a structure have names; to select a
particular member, we specify its name, not its position.

* In some languages, structures are called records,
and members are known as fields.

C PROGRANMMING 2

A Modern Approach stcono eoimion

Declaring Structure Variables

* A structure 1s a logical choice for storing a
collection of related data items.

* A declaration of two structure variables that store
information about parts in a warchouse:

struct {
int number;
char name [NAME LEN+1];
int on hand;

} partl, part2;

C PROGRANMMING 3

A Modern Approach secono eoirion

Declaring Structure Variables

The members of a structure are
stored 1n memory in the order in
which they’ re declared.

Appearance of partl -

Assumptions:
— partl is located at address 2000.
— Integers occupy four bytes.
— NAME LEN has the value 25.

— There are no gaps between the
members.

C PROGRANMMING 4

A Modern Approach secono eoirion

2000

2001

2002

2003

2004

2029

2030

2031

2032

2033

N\

\o

>number

>name

~on_hand

Declaring Structure Variables

» Abstract representations of a structure:

number I

name number name on_ hand

on_hand

 Member values will go 1n the boxes later.

C PROGRANMMING 5

A Modern Approach stcono eoimion

Declaring Structure Variables

Each structure represents a new scope.

Any names declared in that scope won' t conflict
with other names 1n a program.

In C terminology, each structure has a separate
name space for its members.

C PROGRANMMING 6

A Modern Approach secono eoirion

Declaring Structure Variables

* For example, the following declarations can
appear in the same program:

struct
int number;
char name [NAME LEN+1];
int on hand;

} partl, part2;

struct {
char name [NAME LEN+1];
int number;
char sex;
} employeel, employeeZ;
C PROGRANMMING 7

A Modern Approach stcono eoimion

Initializing Structure Variables

A structure declaration may include an initializer:

struct {
int number;
char name[NAME LEN+1];
int on hand;
} partl = {528, "Disk drive", 10},
part2 = {914, "Printer cable", 5};

* Appearance of part1 after initialization:

number 528

name | Disk drive

on hand 10

C PROGRANMMING g

A Modern Approach stcono eoimion

Initializing Structure Variables

Structure nitializers follow rules similar to those
for array 1nitializers.

Expressions used 1n a structure initializer must be
constant. (This restriction 1s relaxed 1n C99.)

An 1nitializer can have fewer members than the
structure it’ s initializing.

Any “leftover” members are given 0 as their
initial value.

C PROGRANMMING 9

A Modern Approach stcono eoimion

Designated Initializers (C99)

C99’ s designated initializers can be used with
structures.

The initializer for part1 shown 1n the previous
example:

{528, "Disk drive", 10}

In a designated 1nitializer, each value would be labeled
by the name of the member that it initializes:

{ .number = 528, .name = "Disk drive", .on hand = 10}

The combination of the period and the member name 1s
called a designator.

C PROGRANMMING 10

A Modern Approach stcono eoimion

Designated Initializers (C99)

* Designated 1nitializers are easier to read and check
for correctness.

» Also, values in a designated initializer don’ t have
to be placed 1n the same order that the members
are listed 1n the structure.

— The programmer doesn’ t have to remember the order in
which the members were originally declared.

— The order of the members can be changed 1n the future
without affecting designated initializers.

C PROGRANMMING 11

A Modern Approach stcono eoimion

Designated Initializers (C99)

* Not all values listed 1n a designated 1nitializer
need be prefixed by a designator.

« Example:
{ .number = 528, "Disk drive", .on hand = 10}
The compiler assumes that "Disk drive"

initializes the member that follows number 1n the
structure.

* Any members that the initializer fails to account
for are set to zero.

C PROGRANMMING 12

A Modern Approach stcono eoimion

Operations on Structures

To access a member within a structure, we write
the name of the structure first, then a period, then
the name of the member.

Statements that display the values of partl’s
members:

printf ("Part number: %d\n", partl.number);
printf ("Part name: %$s\n", partl.name);
printf ("Quantity on hand: %d\n", partl.on hand);

C PROGRANMMING 13

A Modern Approach secono eoirion

Operations on Structures

* The members of a structure are lvalues.

* They can appear on the left side of an assignment
or as the operand 1n an increment or decrement
expression:

partl.number = 258;

/* changes partl's part number */
partl.on hand++;

/* increments partl's quantity on hand */

C PROGRAMMING 14

A Modern Approach secono eoirion

Operations on Structures

The period used to access a structure member 1s
actually a C operator.

It takes precedence over nearly all other operators.
Example:
scanf ("%d", &partl.on hand);

The . operator takes precedence over the &
operator, so & computes the address of
partl.on hand.

C PROGRANMMING 15

A Modern Approach stcono eoimion

Operations on Structures

* The other major structure operation 1s assignment:
partZ2 = partl;
» The effect of this statement 1s to copy

partl.number into part2.number,
partl.name into part?2.name, and so on.

C PROGRANMMING 16

A Modern Approach secono eoirion

Operations on Structures

Arrays can’ t be copied using the = operator, but
an array embedded within a structure 1s copied
when the enclosing structure is copied.

Some programmers exploit this property by
creating “dummy’ structures to enclose arrays that
will be copied later:

struct { int afl[l0]; } al, a2;
al = az2;
/* legal, since al and a2 are structures */

C PROGRANMMING 17

A Modern Approach stcono eoimion

Operations on Structures

The = operator can be used only with structures of
compatible types.

Two structures declared at the same time (as
partl and part2 were) are compatible.

Structures declared using the same “structure tag”
or the same type name are also compatible.

Other than assignment, C provides no operations
on entire structures.

In particular, the == and ! = operators can’ t be
used with structures.

C PROGRANMMING 18

A Modern Approach stcono eoimion

Structure Types

Suppose that a program needs to declare several
structure variables with identical members.

We need a name that represents a fype of structure,
not a particular structure variable.

Ways to name a structure:
— Declare a “structure tag”
— Use typedef to define a type name

C PROGRANMMING 19

A Modern Approach stcono eoimion

Declaring a Structure Tag

* A structure tag 1s a name used to 1identify a
particular kind of structure.

* The declaration of a structure tag named part:

struct part {
int number;
char name[NAME LEN+1];
int on hand;

};

* Note that a semicolon must follow the right brace.

C PROGRANMMING 20

A Modern Approach secono eoirion

Declaring a Structure Tag

The part tag can be used to declare variables:
struct part partl, part?2Z;

We can’ t drop the word struct:

part partl, part2; /*** WRONG ***/

part isn’ ta type name; without the word
struct, it 1s meaningless.

Since structure tags aren’ t recognized unless

preceded by the word struct, they don’ t
conflict with other names used 1n a program.

C PROGRANMMING 21

A Modern Approach stcono eoimion

Declaring a Structure Tag

* The declaration of a structure fag can be combined
with the declaration of structure variables:

struct part {
int number;
char name[NAME LEN+1];
int on hand;

} partl, part2;

C PROGRANMMING 22

A Modern Approach secono eoirion

Declaring a Structure Tag

* All structures declared to have type struct
part are compatible with one another:

struct part partl = {528, "Disk drive", 10};
struct part part?2Z;

part2 = partl;
/* legal; both parts have the same type */

C PROGRANMMING 23

A Modern Approach stcono eoimion

Defining a Structure Type

* As an alternative to declaring a structure tag, we
can use typedef to define a genuine type name.

* A definition of a type named Part:

typedef struct {
int number;
char name[NAME LEN+1];
int on hand;

} Part;

e Part can be used in the same way as the built-in
types:
Part partl, part2;

C PROGRANMMING 24

A Modern Approach secono eoirion

Defining a Structure Type

 When 1t comes time to name a structure, we can
usually choose either to declare a structure tag or
to use typedef.

« However, declaring a structure tag 1s mandatory

when the structure 1s to be used in a linked list
(Chapter 17).

C PROGRANMMING 25

A Modern Approach secono eoirion

Structures as Arguments and Return Values

* Functions may have structures as arguments and
return values.

* A function with a structure argument:

vold print part (struct part p)
{

printf ("Part number: %d\n", p.number);
printf ("Part name: %$s\n", p.name);
printf ("Quantity on hand: %d\n", p.on hand);

}

 Acallofprint part:
print part (partl);

C PROGRANMMING 26

A Modern Approach stcono eoimion

Structures as Arguments and Return Values

« A function that returns a part structure:

struct part build part(int number,
const char *name,

int on hand)

struct part p;

p.number = number;
strcpy (p.name, name);
p.on hand = on hand;
return p;

}
« Acallofbuild part:
partl = build part (528, "Disk drive", 10);

C PROGRANMMING 27

A Modern Approach stcono eoimion

Structures as Arguments and Return Values

* Passing a structure to a function and returning a
structure from a function both require making a
copy of all members in the structure.

» To avoid this overhead, it’ s sometimes advisable

to pass a pointer to a structure or return a pointer
to a structure.

* Chapter 17 gives examples of functions that have
a pointer to a structure as an argument and/or
return a pointer to a structure.

C PROGRANMMING 28

A Modern Approach stcono eoimion

Structures as Arguments and Return Values

« There are other reasons to avoid copying structures.

* For example, the <stdio.h> header defines a type
named FILE, which 1s typically a structure.

 Each FILE structure stores information about the
state of an open file and therefore must be unique in
a program.

» Every function in <stdio.h> that opens a file
returns a pointer to a FILE structure.

* Every function that performs an operation on an
open file requires a FILE pointer as an argument.

C PROGRANMMING 29

A Modern Approach stcono eoimion

Structures as Arguments and Return Values

 Within a function, the initializer for a structure
variable can be another structure:

voild f (struct part partl)

{
struct part part2 = partl;

}

* The structure being initialized must have
automatic storage duration.

C PROGRANMMING 30

A Modern Approach stcono eoimion

Compound Literals (C99)

* Chapter 9 mtroduced the C99 feature known as the
compound literal.

* A compound literal can be used to create a
structure “on the fly,” without first storing it in a
variable.

* The resulting structure can be passed as a
parameter, returned by a function, or assigned to a
variable.

C PROGRANMMING 31

A Modern Approach stcono eoimion

Compound Literals (C99)

A compound literal can be used to create a
structure that will be passed to a function:

print part ((struct part) {528, "Disk drive", 10});
The compound literal 1s shown 1n bold.

A compound literal can also be assigned to a variable:
partl = (struct part) {528, "Disk drive", 10};

A compound literal consists of a type name within
parentheses, followed by a set of values 1n braces.

When a compound literal represents a structure, the
type name can be a structure tag preceded by the word
struct or a typedef name.

C PROGRANMMING 32

A Modern Approach stcono eoimion

Compound Literals (C99)

* A compound literal may contain designators, just
like a designated initializer:

print part ((struct part) {.on hand = 10,
.name = "Disk drive",
.number = 528}) ;

* A compound literal may fail to provide full
initialization, in which case any uninitialized
members default to zero.

C PROGRANMMING 33

A Modern Approach stcono eoimion

Nested Arrays and Structures

 Structures and arrays can be combined without
restriction.

* Arrays may have structures as their elements, and
structures may contain arrays and structures as
members.

C PROGRANMMING 34

A Modern Approach secono eoirion

Nested Structures

* Nesting one structure inside another is often
useful.

* Suppose that person name 1s the following
structure:

struct person name
char first[FIRST NAME LEN+1];
char middle 1initial;
char last[LAST NAME LEN+1];
I

C PROGRANMMING 35

A Modern Approach secono eoirion

Nested Structures

 We can use person name as part of a larger
structure:
struct student {
struct person name name;
int 1d, age; B
char sex;
} studentl, student?2Z;
» Accessing studentl’ s first name, middle
initial, or last name requires two applications of
the . operator:

strcpy (studentl.name.first, "Fred");

C PROGRANMMING 36

A Modern Approach stcono eoimion

Nested Structures

Having name be a structure makes 1t easier to treat
names as units of data.

A function that displays a name could be passed one
person name argument instead of three arguments:

display name (studentl.name) ;

Copying the information from a person name
structure to the name member of a student structure
would take one assignment instead of three:

struct person name new name;

studentl.name = new name;

C PROGRANMMING 37

A Modern Approach stcono eoimion

Arrays of Structures

* One of the most common combinations of arrays
and structures 1s an array whose elements are
structures.

* This kind of array can serve as a simple database.

* An array of part structures capable of storing
information about 100 parts:

struct part inventory[100];

C PROGRANMMING 38

A Modern Approach stcono eoimion

Arrays of Structures

* Accessing a part in the array 1s done by using
subscripting:
print part (inventory[1]);

« Accessing a member within a part structure
requires a combination of subscripting and member
selection:

inventory[1] .number = 883;

* Accessing a single character in a part name requires
subscripting, followed by selection, followed by
subscripting:
inventory[i] .name[0] = "\O0';

C PROGRANMMING 39

A Modern Approach stcono eoimion

Initializing an Array of Structures

 Initializing an array of structures 1s done in much
the same way as initializing a multidimensional

array.
 Each structure has its own brace-enclosed

initializer; the array initializer wraps another set of
braces around the structure initializers.

C PROGRANMMING 40

A Modern Approach secono eoirion

Initializing an Array of Structures

One reason for initializing an array of structures 1s
that it contains information that won' t change

during -

Examp

program execution.
e: an array that contains country codes

used w.
The ele

hen making international telephone calls.
ments of the array will be structures that

store the name of a country along with 1its code:

struct dialing code {
char *country;

int

sy

code;

C PROGRANMMING 41

A Modern Approach stcono eoimion

Initializing an Array of Structures

const struct dialing code country codes[] =

{{"Argentina", 54}, {"Bangladesh", 8801,
{"Brazil", 55}, {"Burma (Myanmar)", 95},
{"China", 8o}, {"Colombia', 57},
{"Congo, Dem. Rep. of", 243}, {"Egypt", 201},
{"Ethiopia", 251}, {"France", 33},
{"Germany", 49}, {"India", 911},
{"Indonesia", 62}, {"Iran", 981,
{"Italy", 39}, {"Japan", 81},
{"Mexico", 52}, {"Nigeria", 2341,
{"Pakistan", 92}, {"Philippines", 63},
{"Poland", 48}, {"Russia", T},
{"South Africa", 27}, {"South Korea", 821},
{"Spain", 34}, {"Sudan", 2491,
{"Thailand", 66}, {"Turkey", 901},
{"Ukraine", 380}, {"United Kingdom", 441,
{"United States", 1}, {"Vietnam", 8411} ;

e The nner braces around each structure value are optional.
C PROGRANMMING 42

A Modern Approach stcono eoimion

Initializing an Array of Structures

» (C99’ s designated initializers allow an item to
have more than one designator.

* A declaration of the inventory array that uses a
designated initializer to create a single part:
struct part inventory[100] =

{[0] .number = 528, [0].on hand = 10,
[0] .name [0] = "\O0'};
The first two items 1n the 1nitializer use two
designators; the last item uses three.

C PROGRANMMING 43

A Modern Approach stcono eoimion

Program: Maintaining a Parts Database

The inventory.c program illustrates how
nested arrays and structures are used 1n practice.

The program tracks parts stored in a warehouse.

Information about the parts 1s stored in an array of
structures.

Contents of each structure:
— Part number

— Name

— Quantity

C PROGRAMMING 44

A Modern Approach secono eoirion

Program: Maintaining a Parts Database

* Operations supported by the program:

— Add a new part number, part name, and initial quantity
on hand

— (1ven a part number, print the name of the part and the
current quantity on hand

— Gi1ven a part number, change the quantity on hand
— Print a table showing all information 1n the database

— Terminate program execution

C PROGRANMMING 45

A Modern Approach secono eoirion

Program: Maintaining a Parts Database

* The codes i (insert), s (search), u (update), p (print),
and g (quit) will be used to represent these operations.

* A session with the program:

Enter operation code: 1
Enter part number: 528
Enter part name: Disk drive
Enter quantity on hand: 10

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 10

C PROGRANMMING 46

A Modern Approach stcono eoimion

Program: Maintaining a Parts Database

Enter operation code: s
Enter part number: 914
Part not found.

Enter operation code: 1

Enter part number: 914

Enter part name: Printer cable
Enter quantity on hand: 5

Enter operation code: u
Enter part number: 528
Enter change 1n quantity on hand: -2

C PROGRANMING 47

A Modern Approach secono eoirion

Chapter 16: Structures, Unions, and Enumerations

Program: Maintaining a Parts Database

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 8

Enter operation code: p

Part Number Part Name Quantity on Hand
528 Disk drive 8
914 Printer cable 5

Enter operation code: g

c PROGRANMMING 48 Copyright © 2008 W. W. Norton & Company.

A Modern AppVOCZCh SECOND EDITION All rights reserved.

Program: Maintaining a Parts Database

* The program will store information about each
part 1n a structure.

* The structures will be stored 1n an array named
inventory.

* A variable named num parts will keep track of
the number of parts currently stored in the array.

C PROGRANMMING 49

A Modern Approach secono eoirion

Program: Maintaining a Parts Database

* An outline of the program’ s main loop:

for (;;) A

prompt user to enter operation code;

read code;
switch (code)
case '1'
case 's'
case 'u'
case 'p':
case 'qg':

default

}
}

C PROGRANMMING

A Modern Approach secono eoirion

{

: perform insert operation; break;
: perform search operation; break;
: perform update operation; break;

perform print operation; break;
terminate program;
print error message ;

50

Program: Maintaining a Parts Database

Separate functions will perform the insert, search,
update, and print operations.

Since the functions will all need access to
inventory and num parts, these variables will
be external.

The program 1s split into three files:
— inventory.c (the bulk of the program)

— readline.h (contains the prototype for the
read line function)

— readline. c (contains the definition of read line)

C PROGRANMMING 51

A Modern Approach secono eoirion

inventory.c
/* Maintains a parts database (array version) */

#include <stdio.h>
#include "readline.h"

#define NAME LEN 25
#define MAX PARTS 100

struct part {
int number;
char name [NAME LEN+1];
int on hand;

} inventory[MAX PARTS];

int num parts = 0; /* number of parts currently stored */

int find part (int number);
volid insert (void) ;
volid search (void) ;
volid update (void) ;
void print (void);

C PROGRANMMING 52

A Modern Approach stcono eoimion

/**

* maln: Prompts the user to enter an operation code, x
* then calls a function to perform the requested x
* action. Repeats until the user enters the *
* command 'qg'. Prints an error message 1f the user *
* enters an illegal code. x
**/

int main (void)

{

char code;

for (;7) |

printf ("Enter operation code: ");

scanf (" %c", &code);

while (getchar() != '\n') /* skips to end of line */
C PROGRANMMING 53

A Modern Approach secono eoirion

switch (code) {
case '1': insert();
break;
case 's': search();
break;
case 'u': update();
break;
case 'p': print():
break;
case 'gq': return 0O;
default: printf("Illegal code\n");
}
printf ("\n");
}

C PROGRANMMING 54

A Modern Approach secono eoirion

/**

* find part: Looks up a part number in the inventory x
* array. Returns the array index i1if the part *
* number is found; otherwise, returns -1. x

**/

int find part (int number)

{

int 1i;
for (1 = 0; 1 < num parts; 1i++)
1f (inventory[i] .number == number)

return 1i;
return -1;

C PROGRANMMING 55

A Modern Approach secono eoirion

/**

* insert: Prompts the user for information about a new
* part and then inserts the part into the

x database. Prints an error message and returns
* prematurely 1f the part already exists or the
x database is full.

*

*
*
*
*
*
I b b b b b b b b b b b b b b b b i b I i i i i i b i i i i i i i i i i i i i i i i i i i A i i i i i i i e i i

/

volid insert (void)

{

int part number;

if (num parts == MAX PARTS) ({
printf ("Database is full; can't add more parts.\n");
return;

C PROGRANMMING 56

A Modern Approach secono eoirion

printf ("Enter part number: ");

scanf ("%d", &part number);

if (find part(part number) >= 0)
printf ("Part already exists.\n");

return;
}
inventory[num parts].number = part number;
printf ("Enter part name: ");
read line (inventory[num parts].name, NAME LEN) ;
printf ("Enter quantity on hand: ");

scanf ("%d", &inventory[num parts].on hand);
num parts++;

C PROGRAMMING 57

A Modern Approach secono eoirion

/**

* search: Prompts the user to enter a part number, then *

* looks up the part in the database. If the part *
* exists, prints the name and quantity on hand; *
* 1f not, prints an error message. *

**/

vold search (void)

{

int 1, number;

printf ("Enter part number: ");
scanft ("3d", &number) ;
1 = find part (number) ;
if (1 >= 0) {
printf ("Part name: %s\n", inventory[i].name);
printf ("Quantity on hand: %d\n", inventory[i].on hand);
} else
printf ("Part not found.\n");

C PROGRANMMING 58

A Modern Approach secono eoirion

/**

*

*
*
*
*
*

update: Prompts the user to enter a part number.
Prints an error message 1f the part doesn't
exist; otherwise, prompts the user to enter
change 1n quantity on hand and updates the

database.

*
*
*
*
*
I b b b b b b b b b b b b b b b b i b I i i i i i b i i i i i i i i i i i i i i i i i i i A i i i i i i i e i i

/

void update (void)

{

int 1, number, change;

printf ("Enter part number: ");
scanf ("%d", &number);
1 = find part (number) ;
if (1 >= 0) {
printf ("Enter change in quantity on hand: ");

scanf ("%d", &change);

inventory[i] .on hand += change;
} else

printf ("Part not found.\n");

C PROGRANMMING 59

A Modern Approach secono eoirion

/**

* print: Prints a listing of all parts in the database,

* showing the part number, part name, and x
* quantity on hand. Parts are printed 1in the *
* order 1n which they were entered into the x
x database. x
R E e g b b b b b b b b b I b b b b b b d b i b b b b b b i b i b i A b i b i i b b b b b b b b b b b b i b i i b Y

/

volid print (void)

{

int 1i;

printf ("Part Number Part Name "
"Quantity on Hand\n");

for (1 = 0; 1 < num parts; 1i++)
printf ("$7d $-25s%11d\n", inventory[i].number,

inventory[i] .name, inventory[i].on hand);

C PROGRANMMING 60

A Modern Approach secono eoirion

Program: Maintaining a Parts Database

The version of read 1ine in Chapter 13 won’ t
work properly 1n the current program.

Consider what happens when the user inserts a part:

Enter part number: 528
Enter part name: Disk drive

The user presses the Enter key after entering the part
number, leaving an invisible new-line character that
the program must read.

When scanf reads the part number, it consumes
the 5, 2, and 8, but leaves the new-line character

unread.
C PROGRANMMING 61

A Modern Approach stcono eoimion

Program: Maintaining a Parts Database

If we try to read the part name using the original
read line function, it will encounter the new-
line character immediately and stop reading.

This problem 1s common when numerical mput 1s
followed by character input.

One solution 1s to write a version of read line
that skips white-space characters before it begins
storing characters.

This solves the new-line problem and also allows us
to avoid storing blanks that precede the part name.

C PROGRANMMING 62

A Modern Approach stcono eoimion

readline.h

#ifndef READLINE H
#define READLINE H

/**

* read line: Skips leading white-space characters, then *
reads the remainder of the input line and *
stores 1t in str. Truncates the line 1f its *
length exceeds n. Returns the number of x
*
*

* % % X%

characters stored.
P b i b b b b i b b b i b i ¢

/

int read line(char str[], int n);

#endif

C PROGRANMMING 63

A Modern Approach secono eoirion

#include
#include
#include

int read

{

int ch

while
while
if (
st

ch
}

str[i]
return

C PROGRANMMING

<ctype.h>
<stdio.h>
"readline

line (char

, 1 = 0;

(1sspace (ch

(ch !'=

1 < n)
r{i++]

'\Ol;

i;

'\n'

readline.c

.h"

str[], int n)

getchar()))

&& ch !'= EOF) {

ch;
getchar () ;

64

A Modern Approach secono eoirion

Unions

* A union, like a structure, consists of one or more
members, possibly of different types.

* The compiler allocates only enough space for the
largest of the members, which overlay each other
within this space.

* Assigning a new value to one member alters the
values of the other members as well.

C PROGRANMMING 65

A Modern Approach stcono eoimion

Unions

An example of a union variable:
union {
int 1;
double d;
bous
The declaration of a union closely resembles a
structure declaration:
struct
int 1;
double d;
boss

C PROGRANMMING 66

A Modern Approach stcono eoimion

Unions

The structure s and the ,
union u differ in just one
way.

1<

The members of s are
stored at different
addresses 1n memory.

The members of u are
stored at the same address.

C PROGRAMMING 67

A Modern Approach secono eoirion

Structure

> d

i< |

Union

>d

Unions

 Members of a union are accessed 1n the same way
as members of a structure:
u.1 = 82;
u.d = 74.8;

* Changing one member of a union alters any value
previously stored in any of the other members.

— Storing a value 1n u . d causes any value previously
stored 1n u. i to be lost.

— Changing u. i corrupts u. d.

C PROGRANMMING 68

A Modern Approach stcono eoimion

Unions

* The properties of unions are almost 1dentical to the
properties of structures.

* We can declare union tags and union types in the
same way we declare structure tags and types.

» Like structures, unions can be copied using the =
operator, passed to functions, and returned by
functions.

C PROGRANMMING 69

A Modern Approach stcono eoimion

Unions

* Only the first member of a union can be given an
initial value.

« How to initialize the i member of u to O:

union
int 1;
double d;
b u = {0};

* The expression inside the braces must be constant.
(The rules are slightly different in C99.)

C PROGRANMMING 70

A Modern Approach stcono eoimion

Unions

* Designated 1nitializers can also be used with
unions.

* A designated 1nitializer allows us to specify which
member of a union should be initialized:
union {
int 1;
double d;
b u = {.d = 10.0};
 Only one member can be initialized, but it doesn’ t
have to be the first one.

C PROGRANMMING 71

A Modern Approach stcono eoimion

Unions

* Applications for unions:
— Saving space
— Building mixed data structures

— Viewing storage 1n different ways (discussed in Chapter
20)

C PROGRANMMING 72

A Modern Approach secono eoirion

Using Unions to Save Space

Unions can be used to save space in structures.

Suppose that we’ re designing a structure that will
contain information about an item that’ s sold
through a gift catalog.

Each 1tem has a stock number and a price, as well
as other information that depends on the type of
the 1tem:

Books: Title, author, number of pages

Mugs: Design

Shirts: Design, colors available, sizes available

C PROGRANMMING 73

A Modern Approach stcono eoimion

Using Unions to Save Space

* A first attempt at designing the catalog item
structure:

struct catalog item
int stock number;
double price;
int item type;
char title[TITLE LEN+1];
char author [AUTHOR LEN+1];
int num pages;
char design[DESIGN LEN+1];
int colors;
int sizes;

bi

C PROGRANMMING 74

A Modern Approach stcono eoimion

Using Unions to Save Space

The item type member would have one of the
values BOOK, MUG, or SHIRT.

The colors and si1zes members would store
encoded combinations of colors and sizes.

This structure wastes space, since only part of the
information 1n the structure 1s common to all items
in the catalog.

By putting a union inside the catalog item
structure, we can reduce the space required by the
structure.

C PROGRANMMING 75

A Modern Approach stcono eoimion

Using Unions to Save Space

struct catalog item {
int stock number;
double price;
int 1tem type;
union {
struct {
char title[TITLE_LEN+1];
char author [AUTHOR LEN+1];
int num pages;
} book;
struct {
char design[DESIGN LEN+1];
} mug;
struct {
char design[DESIGN LEN+1];
int colors;
int sizes;
} shirt;
} item;
}i
C PROGRAMMING 76

A Modern App?”OCLC}Z SECOND EDITION

Using Unions to Save Space

* If cisacatalog item structure that represents
a book, we can print the book' s title in the
following way:
printf ("%s", c.item.book.title);

» As this example shows, accessing a union that’ s
nested 1nside a structure can be awkward.

C PROGRAMMING 77

A Modern Approach secono eoirion

Using Unions to Save Space

The catalog item structure can be used to
illustrate an interesting aspect of unions.

Normally, it’ s not a good idea to store a value into
one member of a union and then access the data

through a different member.

However, there 1s a special case: two or more of the
members of the union are structures, and the structures
begin with one or more matching members.

If one of the structures 1s currently valid, then the
matching members 1n the other structures will also be
valid.

C PROGRANMMING 78

A Modern Approach stcono eoimion

Using Unions to Save Space

The union embedded in the catalog item
structure contains three structures as members.

Two of these (mug and shirt) begin with a
matching member (design).

Now, suppose that we assign a value to one of the
de sign members:

strcpy (c.i1tem.mug.design, "Cats");

The design member in the other structure will be
defined and have the same value:

printf ("$s", c.item.shirt.design);
/* prints "Cats" */

C PROGRANMMING 79

A Modern Approach stcono eoimion

Using Unions to Build Mixed Data Structures

 Unions can be used to create data structures that
contain a mixture of data of different types.

* Suppose that we need an array whose elements are
a mixture of int and double values.

 First, we define a union type whose members
represent the different kinds of data to be stored in
the array:

typedef union {
int 1;
double d;
} Number;
C PROGRANMMING 80

A Modern Approach secono eoirion

Using Unions to Build Mixed Data Structures

* Next, we create an array whose elements are
Number values:

Number number array[1000];

A Number union can store either an int value or
a double value.

* This makes 1t possible to store a mixture of int
and double values in number array:

number array[0].1 = 5;
number arrayl[l].d = 8.395;

C PROGRANMMING 81

A Modern Approach secono eoirion

Adding a “Tag Field” to a Union

e There’ s no easy way to tell which member of a union was
last changed and therefore contains a meaningful value.

* Consider the problem of writing a function that displays
the value stored 1n a Numbe r union:

vold print number (Number n)

{

1f (n contains an integer)
printf ("%d", n.1);
else
printf ("sg", n.d);
}

There’ s no way for print number to determine
whether n contains an integer or a floating-point number.

C PROGRANMMING 82

A Modern Approach secono eoirion

Adding a “Tag Field” to a Union

 In order to keep track of this information, we can
embed the union within a structure that has one
other member: a “tag field” or “discriminant.”

» The purpose of a tag field is to remind us what’ s
currently stored in the union.

* item type served this purpose in the
catalog item structure.

C PROGRANMMING 83

A Modern Approach stcono eoimion

Adding a “Tag Field” to a Union

* The Number type as a structure with an embedded
union:

#define INT KIND O
#define DOUBLE KIND 1

typedef struct {
int kind; /* tag field */
union {
int 1i;
double d;
bouy
} Number;

* The value of kind will be either INT KIND or

DOUBLE KIND.
C PROGRANMMING 84

A Modern Approach stcono eoimion

Adding a “Tag Field” to a Union

Each time we assign a value to a member of u,
we 1l also change kind to remind us which
member of u we modified.

An example that assigns a value to the 1 member
of u:

n.kind = INT_KIND;
n.u.1 = 82;

n 1s assumed to be a Number variable.

C PROGRANMMING 85

A Modern Approach secono eoirion

Adding a “Tag Field” to a Union

* When the number stored in a Number variable 1s
retrieved, kind will tell us which member of the
union was the last to be assigned a value.

* A function that takes advantage of this capability:

vold print number (Number n)
{
1f (n.kind == INT_KIND)
printf ("%d", n.u.1i);
else
printf ("%g", n.u.d);
}

C PROGRANMMING 86

A Modern Approach secono eoirion

Enumerations

* In many programs, we 1l need variables that have
only a small set of meaningful values.

* A variable that stores the suit of a playing card
should have only four potential values: “clubs,”
“diamonds,” “hearts,” and “spades.”

C PROGRANMMING 87

A Modern Approach stcono eoimion

Enumerations

A “suit” variable can be declared as an integer,
with a set of codes that represent the possible
values of the variable:

int s; /* s will store a suit */

s = 2; /* 2 represents "hearts" */
* Problems with this technique:

— We can’ t tell that s has only four possible values.
— The significance of 2 isn’ t apparent.

C PROGRANMMING 88

A Modern Approach stcono eoimion

Enumerations

» Using macros to define a suit “type” and names
for the various suits 1s a step 1n the right direction:

#define SUIT int
#define CLUBS 0
#define DIAMONDS 1
#define HEARTS 2
#define SPADES 3

* An updated version of the previous example:
SUIT s;

s = HEARTS;

C PROGRANMMING 89

A Modern Approach stcono eoimion

Enumerations

* Problems with this technique:

— There’ s no indication to someone reading the program
that the macros represent values of the same “type.”

— If the number of possible values 1s more than a few,
defining a separate macro for each will be tedious.

— The names CLUBS, DIAMONDS, HEARTS, and
SPADES will be removed by the preprocessor, so they
won' t be available during debugging.

C PROGRANMMING %0

A Modern Approach stcono eoimion

Enumerations

* C provides a special kind of type designed
specifically for variables that have a small number
of possible values.

* An enumerated type 1s a type whose values are
listed (“enumerated”) by the programmer.

* Each value must have a name (an enumeration
constant).

C PROGRANMMING o1

A Modern Approach stcono eoimion

Enumerations

Although enumerations have little in common
with structures and unions, they re declared in a
similar way:

enum {CLUBS, DIAMONDS, HEARTS, SPADES} sl, s2Z;
The names of enumeration constants must be

different from other 1dentifiers declared in the
enclosing scope.

C PROGRANMMING %2

A Modern Approach stcono eoimion

Enumerations

 Enumeration constants are similar to constants
created with the #de fine directive, but they re
not equivalent.

« [f an enumeration i1s declared inside a function, its
constants won' t be visible outside the function.

C PROGRANMMING 93

A Modern Approach stcono eoimion

Enumeration Tags and Type Names

As with structures and unions, there are two ways
to name an enumeration: by declaring a tag or by
using typedef to create a genuine type name.
Enumeration tags resemble structure and union
tags:

enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};
suit variables would be declared in the
following way:

enum sult sl, s2;

C PROGRANMMING o4

A Modern Approach secono eoirion

Enumeration Tags and Type Names

* As an alternative, we could use t ypedef to make
Sult atype name:

typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit;
Suit sl1, s2;

* In C89, using t ypedef to name an enumeration

1s an excellent way to create a Boolean type:
typedef enum {FALSE, TRUE} Bool;

C PROGRANMMING %

A Modern Approach secono eoirion

Enumerations as Integers

« Behind the scenes, C treats enumeration variables
and constants as integers.

« By default, the compiler assigns the integers 0, 1,
2, ... to the constants 1n a particular enumeration.

* Inthe suit enumeration, CLUBS, DIAMONDS,
HEARTS, and SPADES represent 0, 1, 2, and 3,
respectively.

C PROGRANMMING %

A Modern Approach stcono eoimion

Enumerations as Integers

The programmer can choose different values for

enumeration constants:

enum suit {CLUBS = 1, DIAMONDS = 2,
HEARTS = 3, SPADES = 4};

The values of enumeration constants may be

arbitrary integers, listed in no particular order:

enum dept {RESEARCH = 20,

PRODUCTION = 10, SALES =
251} ;

It" s even legal for two or more enumeration
constants to have the same value.
C PROGRANMMING o7

A Modern Approach stcono eoimion

Enumerations as Integers

* When no value 1s specified for an enumeration
constant, its value 1s one greater than the value of
the previous constant.

» The first enumeration constant has the value 0 by
default.
« Example:

enum EGA colors {BLACK, LT GRAY = 7,
DK GRAY, WHITE = 15};

BLACK has the value 0, LT GRAY 1S 7, DK GRAY
1S 8, and WHITE 1s 15.

C PROGRANMMING %8

A Modern Approach stcono eoimion

Enumerations as Integers

* Enumeration values can be mixed with ordinary
integers:
int 1i;
enum {CLUBS, DIAMONDS, HEARTS, SPADES} s;

i = DIAMONDS; /* 1 is now 1

s = 0; /* s 1s now O (CLUBS)
s++; /* s 1s now 1 (DIAMONDS)
i =s + 2; /* 1 1s now 3

s 1s treated as a variable of some integer type.

« CLUBS, DIAMONDS, HEARTS, and SPADES are
names for the integers 0, 1, 2, and 3.

C PROGRANMMING %9

A Modern Approach secono eoirion

*/
*/
*/
*/

Enumerations as Integers

» Although it’ s convenient to be able to use an
enumeration value as an integer, it’ s dangerous to
use an integer as an enumeration value.

* For example, we might accidentally store the
number 4—which doesn’ t correspond to any suit
—1nto s.

C PROGRANMMING 100

A Modern Approach stcono eoimion

Using Enumerations to Declare “Tag
Fields”

* Enumerations are perfect for determining which
member of a union was the last to be assigned a

value.

* In the Number structure, we can make the kind
member an enumeration instead of an 1nt:

typedef struct {
enum {INT KIND, DOUBLE KIND} kind;
union {
int 1i;
double d;
bous
} Number;
C PROGRANMMING 101

A Modern Approach secono eoirion

Using Enumerations to Declare “Tag
Fields”

* The new structure 1s used in exactly the same way
as the old one.

« Advantages of the new structure:

— Does away with the INT KIND and DOUBLE KIND
macros

— Makes 1t obvious that kind has only two possible
values: INT KIND and DOUBLE KIND

C PROGRANMMING 102

A Modern Approach stcono eoimion

