Chapter 17

Advanced Uses of Pointers

C PROGRANMMING :

A Modern Approach stcono eoimion

Dynamic Storage Allocation

C’ s data structures, including arrays, are normally
fixed in size.

Fixed-size data structures can be a problem, since
we’ re forced to choose their sizes when writing a

program.

Fortunately, C supports dynamic storage
allocation: the ability to allocate storage during
program execution.

Using dynamic storage allocation, we can design
data structures that grow (and shrink) as needed.

C PROGRANMMING 2

A Modern Approach stcono eoimion

Dynamic Storage Allocation

* Dynamic storage allocation 1s used most often for
strings, arrays, and structures.

* Dynamically allocated structures can be linked
together to form lists, trees, and other data
structures.

* Dynamic storage allocation 1s done by calling a
memory allocation function.

C PROGRANMMING 3

A Modern Approach stcono eoimion

Memory Allocation Functions

 The <stdlib.h> header declares three memory
allocation functions:
malloc—Allocates a block of memory but doesn’ t
initialize 1t.
calloc—Allocates a block of memory and clears it.

realloc—Resizes a previously allocated block of
memory.

* These functions return a value of type void * (a
“generic” pointer).

C PROGRANMMING 4

A Modern Approach secono eoirion

Null Pointers

If a memory allocation function can’ t locate a
memory block of the requested size, it returns a

null pointer.

A null pointer 1s a special value that can be
distinguished from all valid pointers.

After we’ ve stored the function’ s return value in a
pointer variable, we must test to see if it” s a null
pointer.

C PROGRANMMING 5

A Modern Approach stcono eoimion

Null Pointers

 An example of testing malloc’ s return value:
p = malloc(10000);
if (p == NULL) {

/* allocation failed; take appropriate action */

}

 NULL 1s a macro (defined in various library
headers) that represents the null pointer.

* Some programmers combine the call of malloc
with the NULL test:

if ((p = malloc(10000)) == NULL) {

/* allocation failed; take appropriate action */

}
C PROGRAMMING

A Modern Approach

EEEEEEEEEEEEE

Null Pointers

Pointers test true or false in the same way as numbers.

All non-null pointers test true; only null pointers are
false.

Instead of writing

if (p == NULL)
we could write
1f (!'p)

Instead of writing
1f (p != NULL)
we could write
if (p)

C PROGRANMMING 7

A Modern Approach stcono eoimion

Dynamically Allocated Strings

* Dynamic storage allocation 1s often useful for
working with strings.

« Strings are stored in character arrays, and it can be
hard to anticipate how long these arrays need to

be.

* By allocating strings dynamically, we can
postpone the decision until the program 1s running.

C PROGRANMMING :

A Modern Approach stcono eoimion

Using malloc to Allocate Memory for a String

* Prototype for the malloc function:
vold *malloc(size t size);

 malloc allocates a block of size bytes and
returns a pointer to it.

e size t 1san unsigned integer type defined in the
library.

C PROGRANMMING 9

A Modern Approach stcono eoimion

Using malloc to Allocate Memory for a String

* A call of malloc that allocates memory for a
string of n characters:

p = malloc(n + 1);

p 1s a char * variable.

* Each character requires one byte of memory;
adding 1 to n leaves room for the null character.

* Some programmers prefer to cast mall oc’ S
return value, although the cast is not required:

p = (char *) malloc(n + 1);

C PROGRANMMING 10

A Modern Approach secono eoirion

Using malloc to Allocate Memory for a String

e Memory allocated using malloc isn’ t cleared, so
p will point to an uninitialized array of n + 1
characters:

C PROGRAMMING 11

A Modern Approach stcono eoimion

Using malloc to Allocate Memory for a String

« Calling strcpy i1s one way to 1nitialize this array:
strcpy (p, "abc");

* The first four characters in the array will now be
a, b, c,and \O:

C PROGRAMMING 12

A Modern Approach stcono eoimion

Using Dynamic Storage Allocation
in String Functions

Dynamic storage allocation makes it possible to
write functions that return a pointer to a “new’

string.

Consider the problem of writing a function that

concatenates two strings without changing either
one.

The function will measure the lengths of the two
strings to be concatenated, then call malloc to
allocate the right amount of space for the result.

C PROGRANMMING 13

A Modern Approach secono eoirion

Using Dynamic Storage Allocation
in String Functions

char *concat (const char *sl, const char *s2)

{

char *result;

result = malloc(strlen(sl) + strlen(s2) + 1);

1f (result == NULL) {
printf ("Error: malloc failed in concat\n");
exit (EXIT FAILURE) ;

}
strcpy(result, sl);

strcat (result, s2);
return result;

C PROGRANMING 14

A Modern Approach secono eoirion

Using Dynamic Storage Allocation
in String Functions
* A call of the concat function:
p = concat ("abc", "def");

 After the call, p will point to the string
"abcdef", which is stored in a dynamically
allocated array.

C PROGRANMMING 15

A Modern Approach stcono eoimion

Using Dynamic Storage Allocation
in String Functions

* Functions such as concat that dynamically
allocate storage must be used with care.

* When the string that concat returns 1s no longer
needed, we’ 1l want to call the free function to
release the space that the string occupies.

 Ifwe don’ t, the program may eventually run out
of memory.

C PROGRANMMING 16

A Modern Approach secono eoirion

Program: Printing a One-Month
Reminder List (Revisited)

 The remind?2. c program is based on the
remind. c program of Chapter 13, which prints a
one-month list of daily reminders.

* The original remind. c program stores reminder
strings 1n a two-dimensional array of characters.

 In the new program, the array will be one-
dimensional; 1ts elements will be pointers to
dynamically allocated strings.

C PROGRAMMING 17

A Modern Approach secono eoirion

Program: Printing a One-Month
Reminder List (Revisited)

* Advantages of switching to dynamically allocated
strings:
— Uses space more efficiently by allocating the exact
number of characters needed to store a reminder.
— Avoids calling st rcpy to move existing reminder
strings 1n order to make room for a new reminder.
* Switching from a two-dimensional array to an
array of pointers requires changing only eight
lines of the program (shown 1n bold).

C PROGRANMMING 18

A Modern Approach secono eoirion

remind2.c

/* Prints a one-month reminder list (dynamic string version) */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX REMIND 50 /* maximum number of reminders */
#define MSG LEN 60 /* max length of reminder message */

int read line(char str[], 1int n);

int main(void)

{
char *reminders[MAX REMIND] ;
char day str[3], msg str[MSG LEN+1];
int day, 1, Jj, num remind = 0;

C PROGRANMMING T:

A Modern Approach stcono eoimion

for (;;) |

1f (num remind == MAX REMIND) {
printf ("-- No space left --\n");
break;

}

printf ("Enter day and reminder: ") ;

scanf ("%$2d", &day);

1f (day == 0)
break;

sprintf (day str, "$2d", day);
read line (msg str, MSG LEN);

for (1 = 0; 1 < num remind; 1i++)
1f (strcmp(day str, reminders[i]) < 0)
break;
for (j = num remind; J > 1; J—-)
reminders[j] = reminders|[j-1];

C PROGRANMMING 20

A Modern Approach secono eoirion

reminders[i] = malloc(2 + strlen(msg _str) + 1);

if (reminders[i] == NULL) {
printf ("-- No space left --\n");
break;

}

strcpy (reminders[i], day str);
strcat (reminders[i], msg str);

num_ remind++;
printf ("\nDay Reminder\n");
for (1 = 0; 1 < num remind; 1i++)

printf (" %s\n", reminders[i]);

return 0;

C PROGRANMMING 21

A Modern Approach stcono eoimion

int read_line(char str|],

int ch, 1 = 0;
while ((ch = getchar())
if (1 < n)
str[i++] = ch;
\O

str[i] = "
return 1i;

C PROGRANMMING

A Modern Approach stcono eoimion

int n)

22

Dynamically Allocated Arrays

Dynamically allocated arrays have the same
advantages as dynamically allocated strings.

The close relationship between arrays and pointers
makes a dynamically allocated array as easy to use
as an ordinary array.

Although malloc can allocate space for an array,

the calloc function 1s sometimes used instead,
since 1t initializes the memory that 1t allocates.

The realloc function allows us to make an
14 ”” 11 . 13/
array grow or shrink as needed.

C PROGRANMMING 23

A Modern Approach stcono eoimion

Using malloc to Allocate Storage for an Array

* Suppose a program needs an array of n integers,
where n 1s computed during program execution.

« We' Il first declare a pointer variable:
int *a;

* Once the value of n 1s known, the program can
call malloc to allocate space for the array:
a = malloc(n * sizeof(int));

* Always use the sizeof operator to calculate the
amount of space required for each element.

C PROGRANMMING 24

A Modern Approach secono eoirion

Using malloc to Allocate Storage for an Array

We can now 1gnore the fact that a 1s a pointer and
use 1t instead as an array name, thanks to the
relationship between arrays and pointers 1n C.

For example, we could use the following loop to
initialize the array that a points to:
for (1 = 0; 1 < n; 1++)
ali] = 0;
We also have the option of using pointer

arithmetic instead of subscripting to access the
clements of the array.

C PROGRANMMING 25

A Modern Approach stcono eoimion

The calloc Function

e The calloc function is an alternative to
malloc.

* Prototype for calloc:

volid *calloc(size t nmemb, size t
size);

* Properties of calloc:

— Allocates space for an array with nmemb elements,
each of which 1s size bytes long.

— Returns a null pointer if the requested space isn’ t
available.

— Initializes allocated memory by setting all bits to O.
C PROGRANMMING 26

A Modern Approach stcono eoimion

The calloc Function

* A call of calloc that allocates space for an array
of n integers:

a = calloc(n, sizeof (int));

* By calling calloc with 1 as its first argument,
we can allocate space for a data item of any type:

struct point { int x, y; } *p;

p = calloc(l, sizeof (struct point)):;

C PROGRANMMING 27

A Modern Approach secono eoirion

The realloc Function

 The realloc function can resize a dynamically
allocated array.

* Prototype for realloc:
void *realloc(void *ptr, size t size);

* ptr must point to a memory block obtained by a
previous call ofmalloc, calloc,or realloc.

» size represents the new size of the block, which
may be larger or smaller than the original size.

C PROGRANMMING 28

A Modern Approach stcono eoimion

The realloc Function

* Properties of realloc:

— When it expands a memory block, realloc doesn’ t
initialize the bytes that are added to the block.

— If realloc can’ t enlarge the memory block as
requested, it returns a null pointer; the data in the old
memory block 1s unchanged.

— If realloc is called with a null pointer as its first
argument, 1t behaves like malloc.

— If realloc is called with O as its second argument, it
frees the memory block.

C PROGRANMMING 29

A Modern Approach stcono eoimion

The realloc Function

 We expect realloc to be reasonably efficient:

— When asked to reduce the size of a memory block,
realloc should shrink the block “in place.”

— realloc should always attempt to expand a memory
block without moving it.
e Ifitcan’ tenlarge a block, realloc will allocate a
new block elsewhere, then copy the contents of the
old block into the new one.

* Once realloc has returned, be sure to update all
pointers to the memory block 1n case 1t has been
moved.

C PROGRANMMING 30

A Modern Approach stcono eoimion

Deallocating Storage

 malloc and the other memory allocation
functions obtain memory blocks from a storage
pool known as the heap.

 (Calling these functions too often—or asking them
for large blocks of memory—can exhaust the
heap, causing the functions to return a null pointer.

* To make matters worse, a program may allocate
blocks of memory and then lose track of them,
thereby wasting space.

C PROGRANMMING 31

A Modern Approach stcono eoimion

Deallocating Storage

« Example:

p = malloc(..);
g = malloc(..);

L = d;
* A snapshot after the first two statements have been

executed:
|
|

i
IS

C PROGRANMMING 32

A Modern Approach secono eoirion

Deallocating Storage

» After g is assigned to p, both variables now point
to the second memory block:

i
5

q

e There are no pointers to the first block, so we' 11
never be able to use 1t again.

C PROGRANMMING 33

A Modern Approach secono eoirion

Deallocating Storage

A block of memory that’ s no longer accessible to
a program 1s said to be garbage.

A program that leaves garbage behind has a
memory leak.

Some languages provide a garbage collector that
automatically locates and recycles garbage, but C
doesn’ t.

Instead, each C program 1s responsible for
recycling its own garbage by calling the free
function to release unneeded memory.

C PROGRANMMING 34

A Modern Approach stcono eoimion

The £free Function

Prototype for free:
vold free(void *ptr);

free will be passed a pointer to an unneeded
memory block:

p = malloc(..);
g = malloc(..);
free(p);

p = d;

Calling free releases the block of memory that p
points to.

C PROGRANMMING 35

A Modern Approach secono eoirion

The “Dangling Pointer” Problem

* Using free leads to a new problem: dangling
pointers.

 free (p) deallocates the memory block that p points
to, but doesn’ t change p itself.

 If we forget that p no longer points to a valid memory
block, chaos may ensue:

char *p = malloc (4);

free (p);

strcpy (p, "abc"); /*** WRONG **x*/

* Modifying the memory that p points to 1s a serious

CITOT.
C PROGRANMMING 36

A Modern Approach secono eoirion

The “Dangling Pointer” Problem

* Dangling pointers can be hard to spot, since
several pointers may point to the same block of
memory.

* When the block 1s freed, all the pointers are left
dangling.

C PROGRANMMING 37

A Modern Approach secono eoirion

Linked Lists

* Dynamic storage allocation 1s especially useful for
building lists, trees, graphs, and other linked data
structures.

* A linked list consists of a chain of structures
(called nodes), with each node containing a
pointer to the next node 1n the chain:

—]

* The last node 1n the list contains a null pointer.

C PROGRANMMING 38

A Modern Approach stcono eoimion

Linked Lists

* A linked list 1s more flexible than an array: we can
casily insert and delete nodes 1n a linked list,
allowing the list to grow and shrink as needed.

 On the other hand, we lose the “random access”
capability of an array:

— Any element of an array can be accessed in the same
amount of time.

— Accessing a node 1n a linked list is fast if the node 1s
close to the beginning of the list, slow if it’ s near the
end.

C PROGRANMMING 39

A Modern Approach stcono eoimion

Declaring a Node Type

 To set up a linked list, we' 1l need a structure that
represents a single node.

* A node structure will contain data (an integer 1n this
example) plus a pointer to the next node 1n the list:

struct node {
int value; /* data stored in the node */
struct node *next; /* pointer to the next node */

i
 node must be a tag, not a t ypede f name, or there
would be no way to declare the type of next.

C PROGRANMMING 40

A Modern Approach stcono eoimion

Declaring a Node Type

« Next, we' 1l need a variable that always points to
the first node in the list:

struct node *first = NULL;

* Setting £irst to NULL indicates that the list 1s
initially empty.

C PROGRANMMING 41

A Modern Approach secono eoirion

Creating a Node

e As we construct a linked list, we’ 1l create nodes
one by one, adding each to the list.
» Steps involved 1n creating a node:
1. Allocate memory for the node.
2. Store data in the node.
3. Insert the node into the list.

« We' 1l concentrate on the first two steps for now.

C PROGRANMMING 42

A Modern Approach stcono eoimion

Creating a Node

When we create a node, we’ 1l need a variable that
can point to the node temporarily:

struct node *new node;

We' 1l use malloc to allocate memory for the
new node, saving the return value in new node:

new node = malloc(sizeof (struct node)) ;

new node now points to a block of memory just
large enough to hold a node structure:

new node B—> |

value next

C PROGRANMMING 43

A Modern Approach stcono eoimion

Creating a Node

e Next, we’ 1l store data in the value member of
the new node:

(*new node) .value = 10;

* The resulting picture:

new node B—' 10 I

value next

* The parentheses around *new node are
mandatory because the . operator would
otherwise take precedence over the * operator.

C PROGRANMMING 44

A Modern Approach stcono eoimion

The -> Operator

* Accessing a member of a structure using a pointer
1s so common that C provides a special operator

for this purpose.

* This operator, known as right arrow selection, 1s a
minus sign followed by >.

* Using the —> operator, we can write

new node->value = 10;
instead of
(*new node) .value = 10;

C PROGRANMMING 45

A Modern Approach stcono eoimion

The -> Operator

* The —> operator produces an lvalue, so we can use
it wherever an ordinary variable would be
allowed.

A scanf example:
scanf ("%d", &new node->value);

* The & operator 1s still required, even though
new node 18 a pointer.

C PROGRANMMING 46

A Modern Approach stcono eoimion

Inserting a Node at the
Beginning of a Linked List

* One of the advantages of a linked list 1s that nodes
can be added at any point in the list.

« However, the beginning of a list is the easiest
place to insert a node.

* Suppose that new node 1s pointing to the node
to be mserted, and £irst is pointing to the first
node 1n the linked list.

C PROGRANMMING 47

A Modern Approach secono eoirion

Inserting a Node at the
Beginning of a Linked List

It takes two statements to insert the node into the
list.

The first step is to modify the new node’ s next
member to point to the node that was previously at
the beginning of the list:

new node->next = first;

The second step 1s to make £irst point to the
new node:

first = new node;

These statements work even if the list 1s empty.
C PROGRAMMING 48

A Modern Approach secono eoirion

Inserting a Node at the
Beginning of a Linked List
 Let s trace the process of inserting two nodes into
an empty list.

« We' Il insert a node containing the number 10
first, followed by a node containing 20.

C PROGRANMMING 49

A Modern Approach stcono eoimion

Chapter 17: Advanced Uses of Pointers

Inserting a Node at the
Beginning of a Linked List

first = NULL;

first

new node

new node = _
- first

malloc (sizeof (struct node))

N

new node

L LU UL

new node->value = 10; Fipst
o]

new node
c PROGRAMMING 50 Copyright © 2008 W. W. Norton & Company.

A Modern AppVOCZCh SECOND EDITION All rights reserved.

Inserting a Node

at the

Beginning of a Linked List

new node->next = first; first

new node

first = new node; ,
— first

new node = First

malloc(sizeof (struct node))

new node

C PROGRAMMING 51

A Modern Approach secono eoirion

> 10

. 10

Inserting a Node at the
Beginning of a Linked List

new_l’lOde—>Value = 20; first *~—]»_ _____ . .
20 |
new node E |
new node->next = first; , EI
— first —
new node
first = new node; first
o
new node
C PROGRAMMING 52

A Modern Approach secono eoirion

Inserting a Node at the
Beginning of a Linked List

* A function that inserts a node containing n into a
linked list, which pointed to by 1ist:

struct node *add to list(struct node *list, int n)

{

struct node *new node;

new node = malloc(sizeof (struct node));
if (new node == NULL) {
printf ("Error: malloc failed in add to list\n");

exit (EXIT FAILURE);
}

new node->value = n;
new node->next = list;
return new node;

}

C PROGRANMMING 53

A Modern Approach stcono eoimion

Inserting a Node at the
Beginning of a Linked List

Note that add to 1list returns a pointer to the
newly created node (now at the beginning of the

list).

When we call add to 1list, we Il need to
store 1its return value into first:

first = add to list(first, 10);
first = add to list(first, 20);
Getting add to list toupdate first

directly, rather than return a new value for
first, turns out to be tricky.

C PROGRANMMING 54

A Modern Approach secono eoirion

Inserting a Node at the
Beginning of a Linked List

* A function that uses add to 1list to create a linked
list containing numbers entered by the user:

struct node *read_numbers(void)

{
struct node *first = NULL;

int n;

printf ("Enter a series of integers (0 to terminate): ");
for (;7) |
scanf ("sd", &n);
1if (n == 0)
return first;
first = add to list(first, n);

}
}

e The numbers will be in reverse order within the list.
C PROGRAMMING 55

A Modern Approach stcono eoimion

Searching a Linked List

* Although a while loop can be used to search a
list, the for statement 1s often superior.

* A loop that visits the nodes 1n a linked list, using a
pointer variable p to keep track of the “current”
node:

for (p = first; p != NULL; p = p->next)

* A loop of this form can be used 1n a function that
searches a list for an integer n.

C PROGRANMMING 56

A Modern Approach stcono eoimion

Searching a Linked List

 If 1t finds n, the function will return a pointer to the

node containing n; otherwise, it will return a null
pointer.

 An nitial version of the function:

struct node *search list(struct node *list, int n)

{

struct node *p;

for (p = list; p != NULL; p = p->next)
1f (p—->value == n)
return p;

return NULL;
}

C PROGRAMMING 57

A Modern Approach secono eoirion

Searching a Linked List

* There are many other ways to write search list.

* One alternative is to eliminate the p variable, instead
using 11ist itself to keep track of the current node:

struct node *search list(struct node *list, int n)

{
for (; list != NULL; list = list->next)
if (list->value == n)
return list;

return NULL;
}

e Since 1ist 1s a copy of the original list pointer,
there’ s no harm in changing it within the function.

C PROGRANMMING 58

A Modern Approach stcono eoimion

Searching a Linked List

 Another alternative:

struct node *search list(struct node *list, int n)

{
for (; list != NULL && list->value != n;

list = list->next)
return list;

)
e Since list 1s NULL 1f we reach the end of the list,
returning 1ist is correct even if we don’ t find n.

C PROGRANMMING 5

A Modern Approach secono eoirion

Searching a Linked List

* This version of search 1ist might be a bt
clearer 1f we used a while statement:

struct node *search list(struct node *list, int n)
{
while (list != NULL && list->value != n)
list = list->next;
return list;

}

C PROGRANMMING 60

A Modern Approach stcono eoimion

Deleting a Node from a Linked List

* A big advantage of storing data in a linked list 1s
that we can easily delete nodes.

» Deleting a node involves three steps:

1. Locate the node to be deleted.

2. Alter the previous node so that it “bypasses” the
deleted node.

3. Call free to reclaim the space occupied by the
deleted node.
« Step 1 1s harder than 1t looks, because step 2
requires changing the previous node.

* There are various solutions to this problem.
C PROGRANMMING 61

A Modern Approach stcono eoimion

Deleting a Node from a Linked List

The “trailing pointer” technique involves keeping a
pointer to the previous node (prev) as well as a
pointer to the current node (cur).

Assume that 11ist points to the list to be searched and
n is the integer to be deleted.

A loop that implements step 1:

for (cur = list, prev = NULL;
cur != NULL && cur->value != n;
prev = cur, Ccur = cur->next)
When the loop terminates, cur points to the node to

be deleted and prev points to the previous node.
C PROGRANMMING 62

A Modern Approach stcono eoimion

Deleting a Node from a Linked List

* Assume that 11ist has the following appearance
and n 1s 20:

o After cur = 1ist, prev = NULL has been
executed:

prev cur

<t

C PROGRANMMING 63

A Modern Approach secono eoirion

Deleting a Node from a Linked List

* The test cur !'=NULL && cur->value !=nis
true, since cur is pointing to a node and the node

doesn’ t contain 20.

o After prev = cur, cur = cur->next has

been executed:

prev

t}ﬁ_—muzuzm

C PROGRANMMING

A Modern Approach

EEEEEEEEEEEEE

cur

T

64

20

10

Deleting a Node from a Linked List

The test cur '=NULL && cur->value !'=n1is
again true, so prev = cur, cur = cur->next
1s executed once more:

prev cur

Since cur now points to the node containing 20,
the condition cur->value != n is false and the
loop terminates.

C PROGRANMMING 65

A Modern Approach secono eoirion

Deleting a Node from a Linked List

« Next, we' 1l perform the bypass required by step 2.
* The statement
prev->next = cur—->next;

makes the pointer 1n the previous node point to the
node after the current node:

prev cur

s

—

C PROGRANMMING 66

A Modern Approach secono eoirion

Deleting a Node from a Linked List

« Step 3 1s to release the memory occupied by the
current node:

free (cur) ;

C PROGRAMMING 67

A Modern Approach stcono eoimion

Deleting a Node from a Linked List

The delete from 1ist function uses the
strategy just outlined.

When given a list and an integer n, the function
deletes the first node containing n.

If no node contains n, delete from list
does nothing.

In either case, the function returns a pointer to the
list.

Deleting the first node 1n the list 1s a special case
that requires a different bypass step.

C PROGRANMMING 68

A Modern Approach stcono eoimion

Deleting a Node from a Linked List

struct node *delete from list(struct node *list, int n)

{

struct node *cur, *prev;

for (cur = list, prev = NULL;

cur != NULL && cur->value != n;
prev = cur, cCcur = cur->next)
if (cur == NULL)
return list; /* n was not found */
1if (prev == NULL)
list = list->next; /* n 1is in the first node */
else
prev->next = cur->next; /* n is in some other node */

free (cur) ;
return list;

}

C PROGRAMMING 69

A Modern App?”OCLC/Z SECOND EDITION

Ordered Lists

When the nodes of a list are kept in order—sorted
by the data stored inside the nodes—we say that
the list 1s ordered.

Inserting a node into an ordered list 1s more

difficult, because the node won' t always be put at
the beginning of the list.

However, searching 1s faster: we can stop looking
after reaching the point at which the desired node
would have been located.

C PROGRANMMING 70

A Modern Approach stcono eoimion

Program: Maintaining a
Parts Database (Revisited)

 The inventory?2.c program 1s a modification
of the parts database program of Chapter 16, with
the database stored in a linked list this time.

» Advantages of using a linked list:
— No need to put a limit on the size of the database.

— Database can easily be kept sorted by part number.

* In the original program, the database wasn’ t
sorted.

C PROGRANMMING 71

A Modern Approach secono eoirion

Program: Maintaining a
Parts Database (Revisited)

 The part structure will contain an additional
member (a pointer to the next node):
struct part {
int number;
char name[NAME LEN+1];
int on hand;
struct part *next;

b
 inventory will point to the first node in the list:

struct part *inventory = NULL;

C PROGRAMMING 72

A Modern Approach stcono eoimion

Program: Maintaining a
Parts Database (Revisited)
* Most of the functions in the new program will

closely resemble their counterparts in the original
program.

 find part and insert will be more complex,
however, since we' 1l keep the nodes in the
inventory list sorted by part number.

C PROGRANMMING 73

A Modern Approach stcono eoimion

Program: Maintaining a
Parts Database (Revisited)

* In the original program, find part returns an
index into the inventory array.

* In the new program, find part will return a
pointer to the node that contains the desired part
number.

o Ifit doesn t find the part number, find part
will return a null pointer.

C PROGRANMMING 74

A Modern Approach secono eoirion

Program: Maintaining a
Parts Database (Revisited)

* Since the list of parts 1s sorted, £ind part can stop
when it finds a node containing a part number that’ s
greater than or equal to the desired part number.

e find part’ s search loop:

for (p = 1inventory;
'= NULL && number > p->number;

p—->next)

'O 'O O

e When the loop terminates, we' 1l need to test whether
the part was found:

1f (p !'= NULL && number == p->number)
return p;

C PROGRANMMING 75

A Modern Approach stcono eoimion

Program: Maintaining a
Parts Database (Revisited)

* The original version of insert stores a new part
in the next available array element.

 The new version must determine where the new
part belongs 1n the list and 1nsert 1t there.

It will also check whether the part number 1s
already present in the list.

* A loop that accomplishes both tasks:

for (cur = inventory, prev = NULL;
cur != NULL && new node->number > cur->number;
prev = cur, cur = cur->next)

C PROGRANMMING 76

A Modern Approach secono eoirion

Program: Maintaining a
Parts Database (Revisited)
* Once the loop terminates, insert will check
whether cur isn’ t NULL and whether
new node->number equals cur->number.
— If both are true, the part number 1s already in the list.

— Otherwise, insert will insert a new node between the
nodes pointed to by prev and cur.

* This strategy works even 1f the new part number 1s
larger than any in the list.

* Like the original program, this version requires the
read line function of Chapter 16.

C PROGRANMMING 77

A Modern Approach secono eoirion

inventory2.c

/* Maintains a parts database (linked list version) */

#include <stdio.h>
#include <stdlib.h>
#include "readline.h"
#define NAME_LEN 25

struct part {

int number;

char name [NAME LEN+1];
int on hand;

struct part *next;

¥
struct part *inventory = NULL; /* points to first part */

struct part *find part (int number);
vold insert (void) ;
vold search (void) ;
volid update (void) ;
void print (void) ;

C PROGRANMMING 78

A Modern Approach stcono eoimion

/**

* maln: Prompts the user to enter an operation code, x
* then calls a function to perform the requested x
* action. Repeats until the user enters the *
* command 'qg'. Prints an error message 1f the user *
* *

enters an illegal code.

PR A A i b b b b b i b i b i b i i i b i b i b i d i b i b i b i b i i i b i b i i i i i b i i i b i i i i i i i ¢
*/
int main (void)

char code;

for (;7) |

printf ("Enter operation code: ");

scanf (" %c", &code);

while (getchar() != '"\n') /* skips to end of line */
C PROGRANMMING 79

A Modern Approach secono eoirion

switch (code) {
case '1': insert();
break;
case 's': search();
break;
case 'u': update();
break;
case 'p': print():
break;
case 'gq': return 0O;
default: printf("Illegal code\n");
}
printf ("\n");
}

C PROGRANMMING 80

A Modern Approach secono eoirion

/**

* find part: Looks up a part number in the inventory x
* list. Returns a pointer to the node x
* containing the part number; 1f the part *
* number i1s not found, returns NULL. *

PR A A i b i b b A b i i b b A i i i b i b i i i i b g g i i b b G i i i i A g i i i i A i i i i A i g i i i S i ¢
*/
struct part *find part (int number)

{
struct part *p;

for (p = inventory;
p != NULL && number > p->number;
P = p->next)
1f (p !'= NULL && number == p->number)
return p;
return NULL;

C PROGRANMMING 81

A Modern Approach secono eoirion

/**

* insert: Prompts the user for information about a new

* part and then inserts the part into the
inventory list; the list remains sorted by
part number. Prints an error message and
returns prematurely 1f the part already exists
or space could not be allocated for the part.

% % X% X %

S

PR A A i i i b b b i i i b b A i i i i i g i i i b b i g i i b b i i i i i i g g i i A i g i i b i i i i i b S i g
*/
vold insert (void)

{

struct part *cur, *prev, *new node;

new node = malloc(sizeof (struct part));

1f (new node == NULL) {
printf ("Database is full; can't add more parts.\n");
return;

printf ("Enter part number: ")

€CPROGRAMMINGde—>numbgr) ;

A Modern Approach secono eoirion

for (cur = inventory, prev = NULL;

cur != NULL && new node->number > cur->number;
prev = cur, Ccur = cur->next)
if (cur != NULL && new node->number == cur->number)

printf ("Part already exists.\n");
free (new node);
return;

}

printf ("Enter part name: ");

read line (new node->name, NAME LEN);
printf ("Enter quantity on hand: ");
scanf ("%d", &new node->on hand);

new node->next = cur;
1f (prev == NULL)
inventory = new node;
else
prev->next = new node;

C PROGRANMMING 83

A Modern Approach secono eoirion

/**

* search: Prompts the user to enter a part number, then *

* looks up the part in the database. If the part *
* exists, prints the name and quantity on hand; *
* 1f not, prints an error message. *

PR A A i b i b b A b i i b b A i i i b i b i i i i b g g i i b b G i i i i A g i i i i A i i i i A i g i i i S i ¢
*/
vold search (void)

{

int number;
struct part *p;

printf ("Enter part number: ");
scanft ("sd", &number);
p = find part (number);
if (p !'= NULL) {
printf ("Part name: %s\n", p->name);
printf ("Quantity on hand: %d\n", p->on hand);
} else
printf ("Part not found.\n");

} € PROGRANMING 84

A Modern Approach secono eoirion

/**

* update: Prompts the user to enter a part number. x
* Prints an error message 1f the part doesn't x
* exist; otherwise, prompts the user to enter *
* change 1n quantity on hand and updates the x
* *

database.

LR d b db b b b b d b i b db b b b b b b i b I b b b b b b I i b b b i b i i i i b b b i b i b b b b b b i b i i i o
*/
vold update (void)
int number, change;
struct part *p;

printf ("Enter part number: ");

scanft ("3d", &number);

p = find part (number);

if (p !'= NULL) {
printf ("Enter change in quantity on hand: ");
scanf ("%d", &change);
p->on hand += change;

} else

C PROGRANIMINIG found- \ng) /

A Modern Approach secono eoirion

/**

* print: Prints a listing of all parts in the database,
showing the part number, part name, and
quantity on hand. Part numbers will appear 1in
ascending order.

* %

b S o
*

PR A A i b i b b A b i i b b A i i i b i b i i i i b g g i i b b G i i i i A g i i i i A i i i i A i g i i i S i ¢
*/
vold print (void)

{
struct part *p;

printf ("Part Number Part Name "
"Quantity on Hand\n");
for (p = 1nventory; p != NULL; p = p->next)
printf ("$7d $-25s%11d\n", p->number, p->name,

p->on_hand) ;

C PROGRANMMING 86

A Modern Approach secono eoirion

Pointers to Pointers

Chapter 13 introduced the 1dea of a pointer to a
pointer.

The concept of “pointers to pointers” also pops up
frequently in the context of linked data structures.

In particular, when an argument to a function 1s a
pointer variable, we may want the function to be
able to modify the variable.

Doing so requires the use of a pointer to a pointer.

C PROGRANMMING 87

A Modern Approach stcono eoimion

Pointers to Pointers

* The add to 1list function is passed a pointer
to the first node in a list; it returns a pointer to the
first node 1n the updated list:

struct node *add to list(struct node *list, int n)

{

}

struct node *new node;

new node = malloc(sizeof (struct node));
if (new node == NULL) {
printf ("Error: malloc failed in add to list\n");

exit (EXIT FAILURE) ;
}

new node->value = n;
new_node—>next = list;
return new_node;

C PROGRANMMING 88

A Modern Approach secono eoirion

Pointers to Pointers

Moditying add to 1ist so that it assigns
new node to 1ist instead of returning
new:node doesn’ t work.

Example:

add to list(first, 10);

At the point of the call, £irst 1s copied into
list.

If the function changes the value of 11 st, making
it point to the new node, £irst is not affected.

C PROGRANMMING 89

A Modern Approach stcono eoimion

Pointers to Pointers

* QGetting add to list tomodify first requires
passing add to list apointerto first:

void add to list(struct node **list, 1nt n)

{

struct node *new node;

new node = malloc(sizeof (struct node));
if (new node == NULL) {
printf ("Error: malloc failed in add to list\n");

exit (EXIT FAILURE);
}

new_node—>value = n;
new_node—>next = *]ist;
*]ist = new_node;

C PROGRANMMING %0

A Modern Approach secono eoirion

Pointers to Pointers

* When the new version of add to listis
called, the first argument will be the address of
first:
add to list(&first, 10);

» Since 1ist 1s assigned the address of first, we
can use *1ist as an alias for first.

* In particular, assigning new node to *1ist will
modify first.

C PROGRANMMING o1

A Modern Approach stcono eoimion

Pointers to Functions

C doesn’ t require that pointers point only to data,
it s also possible to have pointers to functions.

Functions occupy memory locations, so every
function has an address.

We can use function pointers in much the same
way we use pointers to data.

Passing a function pointer as an argument 1s fairly
common.

C PROGRANMMING %2

A Modern Approach stcono eoimion

Function Pointers as Arguments

« A function named integrate that integrates a
mathematical function £ can be made as general as
possible by passing £ as an argument.

* Prototype for integrate :

double 1ntegrate (double (*f) (double),

double a, double Db);
The parentheses around * £ indicate that f 1s a
pointer to a function.

* An alternative prototype:

double integrate (double f (double),
double a, double Db);

C PROGRANMMING 93

A Modern Approach stcono eoimion

Function Pointers as Arguments

A call of integrate that integrates the sin
(sine) function from 0 to 7t/2:

result = integrate(sin, 0.0, PI / 2);
When a function name isn’ t followed by

parentheses, the C compiler produces a pointer to
the function.

Within the body of integrate, we can call the
function that £ points to:

y = (*f) (x);

Writing £ (x) instead of (*f) (x) 1s allowed.

C PROGRANMMING o4

A Modern Approach stcono eoimion

The gsort Function

* Some of the most useful functions in the C library
require a function pointer as an argument.

* One of these 1s gsort, which belongs to the
<stdlib.h> header.

* gsort 1s a general-purpose sorting function
that’ s capable of sorting any array.

C PROGRANMMING %

A Modern Approach stcono eoimion

The gsort Function

e gsort must be told how to determine which of
two array elements is ~smaller.”

* This is done by passing gsort a pointer to a
comparison function.

 When given two pointers p and g to array
elements, the comparison function must return an

integer that 1s:

— Negative if *p is “less than” *g

— Zero if *p is “equal to” *qg

— Positive if *p is “greater than” *qg

C PROGRANMMING %

A Modern Approach stcono eoimion

The gsort Function

Prototype for gsort:

void gsort (void *base, size t nmemb, size t size,
int (*compar) (const void *, const void *));

base must point to the first element in the array
(or the first element in the portion to be sorted).

nmemb 1s the number of elements to be sorted.

size 1s the size of each array element, measured
in bytes.

compar 1s a pointer to the comparison function.

C PROGRANMMING o7

A Modern Approach stcono eoimion

The gsort Function

 When gsort 1s called, it sorts the array into
ascending order, calling the comparison function
whenever 1t needs to compare array elements.

* A call of gsort that sorts the inventory array
of Chapter 16:

gsort (inventory, num parts,
sizeof (struct part), compare parts);

« compare parts is a function that compares
two part structures.

C PROGRANMMING %8

A Modern Approach stcono eoimion

The gsort Function

* Writing the compare parts function is tricky.

« gsort requires that its parameters have type
void *, but we can’ t access the members of a
part structure through a void * pointer.

* To solve the problem, compare parts will

assign 1ts parameters, p and g, to variables of type
struct part *.

C PROGRANMMING 99

A Modern Approach stcono eoimion

The gsort Function

* A version of compare parts that can be used
to sort the inventory array into ascending order

by part number:

int compare parts(const void *p, const void *Qq)

{
const struct part *pl = p;

const struct part *gql = g

1f (pl->number < gl->number)
return -1;

else 1f (pl->number == gl->number)
return 0O;
else

return 1;

}
C PROGRANMMING 100

A Modern Approach secono eoirion

The gsort Function

* Most C programmers would write the function
more concisely:

int compare parts(const void *p, const void *Qq)

{
1f (((struct part *) p)->number <

((struct part *) qg)->number)
return -1;

else 1f (((struct part *) p)->number ==
((struct part *) qg)->number)
return 0;
else

return 1;

C PROGRANMMING 101

A Modern Approach secono eoirion

The gsort Function

 compare parts can be made even shorter by
removing the i £ statements:

int compare parts(const void *p, const void *Qq)

{
return ((struct part *) p)->number -
((struct part *) qg)->number;

C PROGRANMMING 102

A Modern Approach stcono eoimion

The gsort Function

* A version of compare parts that can be used
to sort the inventory array by part name
instead of part number:

int compare parts(const void *p, const void *Qq)

{

return strcmp(((struct part *) p)->name,
((struct part *) qg)->name);

C PROGRANMMING 103

A Modern Approach secono eoirion

Other Uses of Function Pointers

Although function pointers are often used as
arguments, that” s not all they’ re good for.

C treats pointers to functions just like pointers to
data.

They can be stored in variables or used as
clements of an array or as members of a structure
Or union.

It’ s even possible for functions to return function
pointers.

C PROGRANMMING 104

A Modern Approach stcono eoimion

Other Uses of Function Pointers

* A variable that can store a pointer to a function
with an int parameter and a return type of void:

volid (*pf) (1int);
 If £ 1s such a function, we can make pf point to £
in the following way:
pt = £
* We can now call £ by writing either
(*pf) (1)
or
pf(1);
C PROGRAMMING 105

A Modern Approach secono eoirion

Other Uses of Function Pointers

* An array whose elements are function pointers:

void (*file cmd[]) (void) = {new cmd,
open cmd,
close cmd,
close all cmd,
save cmd,
save as cmd,
save all cmd,
print cmd,
exit cmd

I

C PROGRANMMING 106

A Modern Approach stcono eoimion

Other Uses of Function Pointers

* A call of the function stored in position n of the
file cmd array:
’E;file_cmd[n]) (); /*or file cmd[n] () ;
* We could get a sitmilar effect with a switch
statement, but using an array of function pointers
provides more flexibility.

C PROGRANMMING 107

A Modern Approach secono eoirion

Program: Tabulating the Trigonometric Functions

 The tabulate. c program prints tables showing
the values of the cos, sin, and tan functions.

* The program is built around a function named
tabulate that, when passed a function pointer
f, prints a table showing the values of f.

e tabulate uses the ceil function.

* When given an argument x of double type,
ceil returns the smallest integer that’ s greater
than or equal to x.

C PROGRANMMING 108

A Modern Approach stcono eoimion

Program: Tabulating the Trigonometric Functions

e A session with tabulate. c:

Enter initial value: 0O

Enter final wvalue: .5
Enter increment: .1
X cos (x)
0.00000 1.00000
0.10000 0.99500
0.20000 0.98007
0.30000 0.95534
0.40000 0.92106
0.50000 0.87758

C PROGRAMMING 100

A Modern Approach stcono eoimion

Program: Tabulating the Trigonometric Functions

X sin (x)
0.00000 0.00000
0.10000 0.09983
0.20000 0.19867
0.30000 0.29552
0.40000 0.38942
0.50000 0.47943

X tan (x)
0.00000 0.00000
0.10000 0.10033
0.20000 0.20271
0.30000 0.30934
0.40000 0.42279
0.50000 0.54630

C PROGRANMING 10

A Modern Approach stcono eoimion

tabulate.c

/* Tabulates values of trigonometric functions */

#include <math.h>
#include <stdio.h>

volid tabulate (double (*f) (double), double first,
double last, double incr);

int main (void)
{

double final, increment, initial;

printf ("Enter initial value: ");
scanf ("%1f", &initial);

printf ("Enter final value: ");
scanf ("%1f", &final);

printf ("Enter increment: ");
scanf ("%$1f", &increment);

C PROGRANMMING 11

A Modern Approach stcono eoimion

printf ("\n X cos (x)"
"\n ——————-= ——————- \n") ;

tabulate (cos, initial, final, increment);

printf ("\n X sin(x)"

"\n -————-—- ——————- \n") ;
tabulate (sin, 1initial, final, increment);
printf ("\n X tan(x)"

"\n ——————= ——————— \n") ;

tabulate (tan, initial, final, increment);

return 0;

}

vold tabulate (double (*f) (double), double first,
{ double last, double incr)

double x;
int 1, num intervals;
num intervals = ceil((last - first) / incr);
for (1 = 0; 1 <= num intervals; 1++) {
x = first + 1 * 1incr;

printf ("$10.5f %$10.5f\n", x, (*f) (x));

C PROGRANMMING 112

A Modern Approach secono eoirion

Restricted Pointers (C99)

In C99, the keyword restrict may appear in
the declaration of a pointer:

int * restrict p;
p 1s said to be a restricted pointer.

The intent 1s that 1f p points to an object that 1s
later modified, then that object 1s not accessed 1n
any way other than through p.

Having more than one way to access an object 1s
often called aliasing.

C PROGRANMMING 13

A Modern Approach stcono eoimion

Restricted Pointers (C99)

* Consider the following code:
int * restrict p;
int * restrict qg;
p = malloc(sizeof (1int));
* Normally 1t would be legal to copy p into g and
then modify the integer through q:
q = Py
q = 0; / causes undefined behavior */
* Because p 1s a restricted pointer, the effect of
executing the statement *q = 0; 1s undefined.

C PROGRAMMING 114

A Modern Approach stcono eoimion

Restricted Pointers (C99)

e To 1llustrate the use of restrict, consider the
memcpy and memmove functions.

* The C99 prototype for memcpy, which copies
bytes from one object (pointed to by s2) to
another (pointed to by s1):

vold *memcpy (void * restrict sl,
const volid * restrict s2Z,
size t n);

e The use of restrict with both s1 and s2

indicates that the objects to which they point

shouldn’ t overlap.
C PROGRAMMING 115

A Modern Approach stcono eoimion

Restricted Pointers (C99)

* In contrast, restrict doesn’ tappear in the
prototype for memmove:

vold *memmove (void *sl, const void *s2,
size t n);
 memmove 1s similar to memcpy, but is guaranteed
to work even 1f the source and destination overlap.

* Example of using memmowve to shift the elements
of an array:
int a[l1l00];

memmove (&a[0], &al[l], 99 * sizeof (int));

C PROGRANMMING 116

A Modern Approach stcono eoimion

Restricted Pointers (C99)

* Prior to C99, there was no way to document the
difference between memcpy and memmove.

* The prototypes for the two functions were nearly
1dentical:
void *memcpy (void *sl, const void *s2Z,
size t n);
vold *memmove (void *sl, const void *s2,
size t n);
* The use of restrict in the C99 version of
memcpy s prototype is a warning that the s1 and

s2 objects should not overlap.
C PROGRAMMING 117

A Modern Approach stcono eoimion

Restricted Pointers (C99)

restrict provides information to the compiler
that may enable 1t to produce more efficient code

—a process known as optimization.

The C99 standard guarantees that restrict has
no effect on the behavior of a program that
conforms to the standard.

Most programmers won tuse restrict unless
they re fine-tuning a program to achieve the best

possible performance.

C PROGRANMMING 118

A Modern Approach stcono eoimion

Flexible Array Members (C99)

 Occasionally, we’ 1l need to define a structure that
contains an array of an unknown size.

* For example, we might want a structure that stores
the characters in a string together with the string s
length:
struct vstring {

int len;
char chars|[N];

b
» Using a fixed-length array is undesirable: 1t limits
the length of the string and wastes memory.

C PROGRANMMING 19

A Modern Approach stcono eoimion

Flexible Array Members (C99)

* C programmers traditionally solve this problem by
declaring the length of chars to be 1 and then
dynamically allocating each string:

struct vstring {
int len;
char chars|[1l];

} s

struct vstring *str =
malloc(sizeof (struct vstring) + n - 1);
str->len = n;

» This technique is known as the “struct hack.”
C PROGRANMMING 120

A Modern Approach secono eoirion

Flexible Array Members (C99)

The struct hack 1s supported by many compilers.

Some (including GCC) even allow the chars
array to have zero length.

The C89 standard doesn’ t guarantee that the struct
hack will work, but a C99 feature known as the
flexible array member serves the same purpose.

C PROGRANMMING 121

A Modern Approach stcono eoimion

Flexible Array Members (C99)

* When the last member of a structure 1s an array, its
length may be omitted:

struct vstring {
int len;
char chars[]; /* flexible array member — C99 only */

b
e The length of the array isn’ t determined until memory
1s allocated for a vstring structure:

struct vstring *str =

malloc (sizeof (struct vstring) + n);
str->len = n;

sizeof 1gnores the chars member when computing
the size of the structure.

C PROGRANMMING 122

A Modern Approach secono eoirion

Flexible Array Members (C99)

* Special rules for structures that contain a flexible
array member:
— The flexible array must be the last member.
— The structure must have at least one other member.

* Copying a structure that contains a flexible array
member will copy the other members but not the

flexible array itself.

C PROGRANMMING 123

A Modern Approach secono eoirion

Flexible Array Members (C99)

A structure that contains a flexible array member is
an incomplete type.

An incomplete type 1s missing part of the
information needed to determine how much memory
it requires.

Incomplete types are subject to various restrictions.

In particular, an incomplete type can’ t be a member
of another structure or an element of an array.

However, an array may contain pointers to
structures that have a flexible array member.

C PROGRAMMING 124

A Modern Approach stcono eoimion

