
Chapter 17: Advanced Uses of Pointers

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 17

Advanced Uses of Pointers

Chapter 17: Advanced Uses of Pointers

Dynamic Storage Allocation
•  C’s data structures, including arrays, are normally

fixed in size.
•  Fixed-size data structures can be a problem, since

we’re forced to choose their sizes when writing a
program.

•  Fortunately, C supports dynamic storage
allocation: the ability to allocate storage during
program execution.

•  Using dynamic storage allocation, we can design
data structures that grow (and shrink) as needed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 17: Advanced Uses of Pointers

Dynamic Storage Allocation
•  Dynamic storage allocation is used most often for

strings, arrays, and structures.
•  Dynamically allocated structures can be linked

together to form lists, trees, and other data
structures.

•  Dynamic storage allocation is done by calling a
memory allocation function.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 17: Advanced Uses of Pointers

Memory Allocation Functions
•  The <stdlib.h> header declares three memory

allocation functions:
 malloc—Allocates a block of memory but doesn’t

initialize it.
 calloc—Allocates a block of memory and clears it.
 realloc—Resizes a previously allocated block of

memory.

•  These functions return a value of type void * (a
“generic” pointer).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 17: Advanced Uses of Pointers

Null Pointers
•  If a memory allocation function can’t locate a

memory block of the requested size, it returns a
null pointer.

•  A null pointer is a special value that can be
distinguished from all valid pointers.

•  After we’ve stored the function’s return value in a
pointer variable, we must test to see if it’s a null
pointer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 17: Advanced Uses of Pointers

Null Pointers
•  An example of testing malloc’s return value:
 p = malloc(10000);
 if (p == NULL) {
 /* allocation failed; take appropriate action */
 }

•  NULL is a macro (defined in various library
headers) that represents the null pointer.

•  Some programmers combine the call of malloc
with the NULL test:

 if ((p = malloc(10000)) == NULL) {
 /* allocation failed; take appropriate action */
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 17: Advanced Uses of Pointers

Null Pointers
•  Pointers test true or false in the same way as numbers.
•  All non-null pointers test true; only null pointers are

false.
•  Instead of writing
 if (p == NULL) …

 we could write
 if (!p) …

•  Instead of writing
 if (p != NULL) …

 we could write
 if (p) …

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 17: Advanced Uses of Pointers

Dynamically Allocated Strings
•  Dynamic storage allocation is often useful for

working with strings.
•  Strings are stored in character arrays, and it can be

hard to anticipate how long these arrays need to
be.

•  By allocating strings dynamically, we can
postpone the decision until the program is running.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Memory for a String

•  Prototype for the malloc function:
 void *malloc(size_t size);

•  malloc allocates a block of size bytes and
returns a pointer to it.

•  size_t is an unsigned integer type defined in the
library.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Memory for a String

•  A call of malloc that allocates memory for a
string of n characters:

 p = malloc(n + 1);

 p is a char * variable.
•  Each character requires one byte of memory;

adding 1 to n leaves room for the null character.
•  Some programmers prefer to cast malloc’s

return value, although the cast is not required:
 p = (char *) malloc(n + 1);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Memory for a String

•  Memory allocated using malloc isn’t cleared, so
p will point to an uninitialized array of n + 1
characters:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Memory for a String

•  Calling strcpy is one way to initialize this array:
 strcpy(p, "abc");

•  The first four characters in the array will now be
a, b, c, and \0:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 17: Advanced Uses of Pointers

Using Dynamic Storage Allocation
in String Functions

•  Dynamic storage allocation makes it possible to
write functions that return a pointer to a “new”
string.

•  Consider the problem of writing a function that
concatenates two strings without changing either
one.

•  The function will measure the lengths of the two
strings to be concatenated, then call malloc to
allocate the right amount of space for the result.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 17: Advanced Uses of Pointers

Using Dynamic Storage Allocation
in String Functions

char *concat(const char *s1, const char *s2)
{
 char *result;

 result = malloc(strlen(s1) + strlen(s2) + 1);
 if (result == NULL) {
 printf("Error: malloc failed in concat\n");
 exit(EXIT_FAILURE);
 }
 strcpy(result, s1);
 strcat(result, s2);
 return result;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 17: Advanced Uses of Pointers

Using Dynamic Storage Allocation
in String Functions

•  A call of the concat function:
 p = concat("abc", "def");

•  After the call, p will point to the string
"abcdef", which is stored in a dynamically
allocated array.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 17: Advanced Uses of Pointers

Using Dynamic Storage Allocation
in String Functions

•  Functions such as concat that dynamically
allocate storage must be used with care.

•  When the string that concat returns is no longer
needed, we’ll want to call the free function to
release the space that the string occupies.

•  If we don’t, the program may eventually run out
of memory.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 17: Advanced Uses of Pointers

Program: Printing a One-Month
Reminder List (Revisited)

•  The remind2.c program is based on the
remind.c program of Chapter 13, which prints a
one-month list of daily reminders.

•  The original remind.c program stores reminder
strings in a two-dimensional array of characters.

•  In the new program, the array will be one-
dimensional; its elements will be pointers to
dynamically allocated strings.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 17: Advanced Uses of Pointers

Program: Printing a One-Month
Reminder List (Revisited)

•  Advantages of switching to dynamically allocated
strings:
–  Uses space more efficiently by allocating the exact

number of characters needed to store a reminder.
–  Avoids calling strcpy to move existing reminder

strings in order to make room for a new reminder.
•  Switching from a two-dimensional array to an

array of pointers requires changing only eight
lines of the program (shown in bold).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 17: Advanced Uses of Pointers

remind2.c

/* Prints a one-month reminder list (dynamic string version) */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX_REMIND 50 /* maximum number of reminders */
#define MSG_LEN 60 /* max length of reminder message */

int read_line(char str[], int n);
int main(void)
{
 char *reminders[MAX_REMIND];
 char day_str[3], msg_str[MSG_LEN+1];
 int day, i, j, num_remind = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 17: Advanced Uses of Pointers

 for (;;) {
 if (num_remind == MAX_REMIND) {
 printf("-- No space left --\n");
 break;
 }

 printf("Enter day and reminder: ");
 scanf("%2d", &day);
 if (day == 0)
 break;
 sprintf(day_str, "%2d", day);
 read_line(msg_str, MSG_LEN);

 for (i = 0; i < num_remind; i++)
 if (strcmp(day_str, reminders[i]) < 0)
 break;
 for (j = num_remind; j > i; j--)
 reminders[j] = reminders[j-1];

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 17: Advanced Uses of Pointers

 reminders[i] = malloc(2 + strlen(msg_str) + 1);
 if (reminders[i] == NULL) {
 printf("-- No space left --\n");
 break;
 }

 strcpy(reminders[i], day_str);
 strcat(reminders[i], msg_str);

 num_remind++;
 }

 printf("\nDay Reminder\n");
 for (i = 0; i < num_remind; i++)
 printf(" %s\n", reminders[i]);

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 17: Advanced Uses of Pointers

int read_line(char str[], int n)
{
 int ch, i = 0;

 while ((ch = getchar()) != '\n')
 if (i < n)
 str[i++] = ch;
 str[i] = '\0';
 return i;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 17: Advanced Uses of Pointers

Dynamically Allocated Arrays
•  Dynamically allocated arrays have the same

advantages as dynamically allocated strings.
•  The close relationship between arrays and pointers

makes a dynamically allocated array as easy to use
as an ordinary array.

•  Although malloc can allocate space for an array,
the calloc function is sometimes used instead,
since it initializes the memory that it allocates.

•  The realloc function allows us to make an
array “grow” or “shrink” as needed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Storage for an Array

•  Suppose a program needs an array of n integers,
where n is computed during program execution.

•  We’ll first declare a pointer variable:
 int *a;

•  Once the value of n is known, the program can
call malloc to allocate space for the array:

 a = malloc(n * sizeof(int));

•  Always use the sizeof operator to calculate the
amount of space required for each element.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 17: Advanced Uses of Pointers

Using malloc to Allocate Storage for an Array

•  We can now ignore the fact that a is a pointer and
use it instead as an array name, thanks to the
relationship between arrays and pointers in C.

•  For example, we could use the following loop to
initialize the array that a points to:

 for (i = 0; i < n; i++)
 a[i] = 0;

•  We also have the option of using pointer
arithmetic instead of subscripting to access the
elements of the array.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 17: Advanced Uses of Pointers

The calloc Function
•  The calloc function is an alternative to
malloc.

•  Prototype for calloc:
 void *calloc(size_t nmemb, size_t
size);

•  Properties of calloc:
–  Allocates space for an array with nmemb elements,

each of which is size bytes long.
–  Returns a null pointer if the requested space isn’t

available.
–  Initializes allocated memory by setting all bits to 0.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 17: Advanced Uses of Pointers

The calloc Function
•  A call of calloc that allocates space for an array

of n integers:
 a = calloc(n, sizeof(int));

•  By calling calloc with 1 as its first argument,
we can allocate space for a data item of any type:

 struct point { int x, y; } *p;

 p = calloc(1, sizeof(struct point));

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 17: Advanced Uses of Pointers

The realloc Function
•  The realloc function can resize a dynamically

allocated array.
•  Prototype for realloc:
 void *realloc(void *ptr, size_t size);

•  ptr must point to a memory block obtained by a
previous call of malloc, calloc, or realloc.

•  size represents the new size of the block, which
may be larger or smaller than the original size.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 17: Advanced Uses of Pointers

The realloc Function
•  Properties of realloc:

–  When it expands a memory block, realloc doesn’t
initialize the bytes that are added to the block.

–  If realloc can’t enlarge the memory block as
requested, it returns a null pointer; the data in the old
memory block is unchanged.

–  If realloc is called with a null pointer as its first
argument, it behaves like malloc.

–  If realloc is called with 0 as its second argument, it
frees the memory block.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 17: Advanced Uses of Pointers

The realloc Function
•  We expect realloc to be reasonably efficient:

–  When asked to reduce the size of a memory block,
realloc should shrink the block “in place.”

–  realloc should always attempt to expand a memory
block without moving it.

•  If it can’t enlarge a block, realloc will allocate a
new block elsewhere, then copy the contents of the
old block into the new one.

•  Once realloc has returned, be sure to update all
pointers to the memory block in case it has been
moved.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 17: Advanced Uses of Pointers

Deallocating Storage
•  malloc and the other memory allocation

functions obtain memory blocks from a storage
pool known as the heap.

•  Calling these functions too often—or asking them
for large blocks of memory—can exhaust the
heap, causing the functions to return a null pointer.

•  To make matters worse, a program may allocate
blocks of memory and then lose track of them,
thereby wasting space.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 17: Advanced Uses of Pointers

Deallocating Storage
•  Example:
 p = malloc(…);
 q = malloc(…);
 p = q;

•  A snapshot after the first two statements have been
executed:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 17: Advanced Uses of Pointers

Deallocating Storage
•  After q is assigned to p, both variables now point

to the second memory block:

•  There are no pointers to the first block, so we’ll
never be able to use it again.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 17: Advanced Uses of Pointers

Deallocating Storage
•  A block of memory that’s no longer accessible to

a program is said to be garbage.
•  A program that leaves garbage behind has a

memory leak.
•  Some languages provide a garbage collector that

automatically locates and recycles garbage, but C
doesn’t.

•  Instead, each C program is responsible for
recycling its own garbage by calling the free
function to release unneeded memory.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 17: Advanced Uses of Pointers

The free Function
•  Prototype for free:
 void free(void *ptr);

•  free will be passed a pointer to an unneeded
memory block:

 p = malloc(…);
 q = malloc(…);
 free(p);
 p = q;

•  Calling free releases the block of memory that p
points to.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 17: Advanced Uses of Pointers

The “Dangling Pointer” Problem
•  Using free leads to a new problem: dangling

pointers.
•  free(p) deallocates the memory block that p points

to, but doesn’t change p itself.
•  If we forget that p no longer points to a valid memory

block, chaos may ensue:
 char *p = malloc(4);
 …
 free(p);
 …
 strcpy(p, "abc"); /*** WRONG ***/

•  Modifying the memory that p points to is a serious
error.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 17: Advanced Uses of Pointers

The “Dangling Pointer” Problem
•  Dangling pointers can be hard to spot, since

several pointers may point to the same block of
memory.

•  When the block is freed, all the pointers are left
dangling.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 17: Advanced Uses of Pointers

Linked Lists
•  Dynamic storage allocation is especially useful for

building lists, trees, graphs, and other linked data
structures.

•  A linked list consists of a chain of structures
(called nodes), with each node containing a
pointer to the next node in the chain:

•  The last node in the list contains a null pointer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 17: Advanced Uses of Pointers

Linked Lists
•  A linked list is more flexible than an array: we can

easily insert and delete nodes in a linked list,
allowing the list to grow and shrink as needed.

•  On the other hand, we lose the “random access”
capability of an array:
–  Any element of an array can be accessed in the same

amount of time.
–  Accessing a node in a linked list is fast if the node is

close to the beginning of the list, slow if it’s near the
end.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 17: Advanced Uses of Pointers

Declaring a Node Type
•  To set up a linked list, we’ll need a structure that

represents a single node.
•  A node structure will contain data (an integer in this

example) plus a pointer to the next node in the list:
 struct node {
 int value; /* data stored in the node */
 struct node *next; /* pointer to the next node */
 };

•  node must be a tag, not a typedef name, or there
would be no way to declare the type of next.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 17: Advanced Uses of Pointers

Declaring a Node Type
•  Next, we’ll need a variable that always points to

the first node in the list:
 struct node *first = NULL;

•  Setting first to NULL indicates that the list is
initially empty.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 17: Advanced Uses of Pointers

Creating a Node
•  As we construct a linked list, we’ll create nodes

one by one, adding each to the list.
•  Steps involved in creating a node:

1.  Allocate memory for the node.
2.  Store data in the node.
3.  Insert the node into the list.

•  We’ll concentrate on the first two steps for now.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 17: Advanced Uses of Pointers

Creating a Node
•  When we create a node, we’ll need a variable that

can point to the node temporarily:
 struct node *new_node;

•  We’ll use malloc to allocate memory for the
new node, saving the return value in new_node:

 new_node = malloc(sizeof(struct node));

•  new_node now points to a block of memory just
large enough to hold a node structure:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 17: Advanced Uses of Pointers

Creating a Node
•  Next, we’ll store data in the value member of

the new node:
 (*new_node).value = 10;

•  The resulting picture:

•  The parentheses around *new_node are

mandatory because the . operator would
otherwise take precedence over the * operator.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 17: Advanced Uses of Pointers

The -> Operator
•  Accessing a member of a structure using a pointer

is so common that C provides a special operator
for this purpose.

•  This operator, known as right arrow selection, is a
minus sign followed by >.

•  Using the -> operator, we can write
 new_node->value = 10;

 instead of
 (*new_node).value = 10;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 17: Advanced Uses of Pointers

The -> Operator
•  The -> operator produces an lvalue, so we can use

it wherever an ordinary variable would be
allowed.

•  A scanf example:
 scanf("%d", &new_node->value);

•  The & operator is still required, even though
new_node is a pointer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 17: Advanced Uses of Pointers

Inserting a Node at the
Beginning of a Linked List

•  One of the advantages of a linked list is that nodes
can be added at any point in the list.

•  However, the beginning of a list is the easiest
place to insert a node.

•  Suppose that new_node is pointing to the node
to be inserted, and first is pointing to the first
node in the linked list.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 17: Advanced Uses of Pointers

Inserting a Node at the
Beginning of a Linked List

•  It takes two statements to insert the node into the
list.

•  The first step is to modify the new node’s next
member to point to the node that was previously at
the beginning of the list:

 new_node->next = first;

•  The second step is to make first point to the
new node:

 first = new_node;

•  These statements work even if the list is empty.
 Copyright © 2008 W. W. Norton & Company.

All rights reserved.
48

Chapter 17: Advanced Uses of Pointers

Inserting a Node at the
Beginning of a Linked List

•  Let’s trace the process of inserting two nodes into
an empty list.

•  We’ll insert a node containing the number 10
first, followed by a node containing 20.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 17: Advanced Uses of Pointers

first = NULL;

new_node =

 malloc(sizeof(struct node));

new_node->value = 10;

Inserting a Node at the
Beginning of a Linked List

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 17: Advanced Uses of Pointers

new_node->next = first;

first = new_node;

new_node =

 malloc(sizeof(struct node));

Inserting a Node at the
Beginning of a Linked List

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 17: Advanced Uses of Pointers

Inserting a Node at the
Beginning of a Linked List

new_node->value = 20;

new_node->next = first;

first = new_node;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 17: Advanced Uses of Pointers

Inserting a Node at the
Beginning of a Linked List

•  A function that inserts a node containing n into a
linked list, which pointed to by list:

 struct node *add_to_list(struct node *list, int n)
 {
 struct node *new_node;

 new_node = malloc(sizeof(struct node));
 if (new_node == NULL) {
 printf("Error: malloc failed in add_to_list\n");
 exit(EXIT_FAILURE);
 }
 new_node->value = n;
 new_node->next = list;
 return new_node;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 17: Advanced Uses of Pointers

Inserting a Node at the
Beginning of a Linked List

•  Note that add_to_list returns a pointer to the
newly created node (now at the beginning of the
list).

•  When we call add_to_list, we’ll need to
store its return value into first:

 first = add_to_list(first, 10);
 first = add_to_list(first, 20);

•  Getting add_to_list to update first
directly, rather than return a new value for
first, turns out to be tricky.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 17: Advanced Uses of Pointers

Inserting a Node at the
Beginning of a Linked List

•  A function that uses add_to_list to create a linked
list containing numbers entered by the user:

 struct node *read_numbers(void)
 {
 struct node *first = NULL;
 int n;

 printf("Enter a series of integers (0 to terminate): ");
 for (;;) {
 scanf("%d", &n);
 if (n == 0)
 return first;
 first = add_to_list(first, n);
 }
 }

•  The numbers will be in reverse order within the list.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 17: Advanced Uses of Pointers

Searching a Linked List
•  Although a while loop can be used to search a

list, the for statement is often superior.
•  A loop that visits the nodes in a linked list, using a

pointer variable p to keep track of the “current”
node:

 for (p = first; p != NULL; p = p->next)
 …

•  A loop of this form can be used in a function that
searches a list for an integer n.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

Chapter 17: Advanced Uses of Pointers

Searching a Linked List
•  If it finds n, the function will return a pointer to the

node containing n; otherwise, it will return a null
pointer.

•  An initial version of the function:
 struct node *search_list(struct node *list, int n)
 {
 struct node *p;

 for (p = list; p != NULL; p = p->next)
 if (p->value == n)
 return p;
 return NULL;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 17: Advanced Uses of Pointers

Searching a Linked List
•  There are many other ways to write search_list.
•  One alternative is to eliminate the p variable, instead

using list itself to keep track of the current node:
 struct node *search_list(struct node *list, int n)
 {
 for (; list != NULL; list = list->next)
 if (list->value == n)
 return list;
 return NULL;
 }

•  Since list is a copy of the original list pointer,
there’s no harm in changing it within the function.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 17: Advanced Uses of Pointers

Searching a Linked List
•  Another alternative:
 struct node *search_list(struct node *list, int n)
 {
 for (; list != NULL && list->value != n;
 list = list->next)
 ;
 return list;
 }

•  Since list is NULL if we reach the end of the list,
returning list is correct even if we don’t find n.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 17: Advanced Uses of Pointers

Searching a Linked List
•  This version of search_list might be a bit

clearer if we used a while statement:
 struct node *search_list(struct node *list, int n)
 {
 while (list != NULL && list->value != n)
 list = list->next;
 return list;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

60

Chapter 17: Advanced Uses of Pointers

Deleting a Node from a Linked List
•  A big advantage of storing data in a linked list is

that we can easily delete nodes.
•  Deleting a node involves three steps:

1.  Locate the node to be deleted.
2.  Alter the previous node so that it “bypasses” the

deleted node.
3.  Call free to reclaim the space occupied by the

deleted node.
•  Step 1 is harder than it looks, because step 2

requires changing the previous node.
•  There are various solutions to this problem.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

61

Chapter 17: Advanced Uses of Pointers

Deleting a Node from a Linked List
•  The “trailing pointer” technique involves keeping a

pointer to the previous node (prev) as well as a
pointer to the current node (cur).

•  Assume that list points to the list to be searched and
n is the integer to be deleted.

•  A loop that implements step 1:
 for (cur = list, prev = NULL;
 cur != NULL && cur->value != n;
 prev = cur, cur = cur->next)
 ;

•  When the loop terminates, cur points to the node to
be deleted and prev points to the previous node.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

62

Chapter 17: Advanced Uses of Pointers

Deleting a Node from a Linked List
•  Assume that list has the following appearance

and n is 20:

•  After cur = list, prev = NULL has been
executed:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

63

Chapter 17: Advanced Uses of Pointers

Deleting a Node from a Linked List
•  The test cur != NULL && cur->value != n is

true, since cur is pointing to a node and the node
doesn’t contain 20.

•  After prev = cur, cur = cur->next has
been executed:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

64

Chapter 17: Advanced Uses of Pointers

Deleting a Node from a Linked List
•  The test cur != NULL && cur->value != n is

again true, so prev = cur, cur = cur->next
is executed once more:

•  Since cur now points to the node containing 20,
the condition cur->value != n is false and the
loop terminates.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

65

Chapter 17: Advanced Uses of Pointers

Deleting a Node from a Linked List
•  Next, we’ll perform the bypass required by step 2.
•  The statement
 prev->next = cur->next;

 makes the pointer in the previous node point to the
node after the current node:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

66

Chapter 17: Advanced Uses of Pointers

Deleting a Node from a Linked List
•  Step 3 is to release the memory occupied by the

current node:
 free(cur);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

67

Chapter 17: Advanced Uses of Pointers

Deleting a Node from a Linked List
•  The delete_from_list function uses the

strategy just outlined.
•  When given a list and an integer n, the function

deletes the first node containing n.
•  If no node contains n, delete_from_list

does nothing.
•  In either case, the function returns a pointer to the

list.
•  Deleting the first node in the list is a special case

that requires a different bypass step.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

68

Chapter 17: Advanced Uses of Pointers

Deleting a Node from a Linked List
struct node *delete_from_list(struct node *list, int n)
{
 struct node *cur, *prev;

 for (cur = list, prev = NULL;
 cur != NULL && cur->value != n;
 prev = cur, cur = cur->next)
 ;
 if (cur == NULL)
 return list; /* n was not found */
 if (prev == NULL)
 list = list->next; /* n is in the first node */
 else
 prev->next = cur->next; /* n is in some other node */
 free(cur);
 return list;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

69

Chapter 17: Advanced Uses of Pointers

Ordered Lists
•  When the nodes of a list are kept in order—sorted

by the data stored inside the nodes—we say that
the list is ordered.

•  Inserting a node into an ordered list is more
difficult, because the node won’t always be put at
the beginning of the list.

•  However, searching is faster: we can stop looking
after reaching the point at which the desired node
would have been located.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

70

Chapter 17: Advanced Uses of Pointers

Program: Maintaining a
Parts Database (Revisited)

•  The inventory2.c program is a modification
of the parts database program of Chapter 16, with
the database stored in a linked list this time.

•  Advantages of using a linked list:
–  No need to put a limit on the size of the database.
–  Database can easily be kept sorted by part number.

•  In the original program, the database wasn’t
sorted.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

71

Chapter 17: Advanced Uses of Pointers

Program: Maintaining a
Parts Database (Revisited)

•  The part structure will contain an additional
member (a pointer to the next node):

 struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 struct part *next;
 };
•  inventory will point to the first node in the list:
 struct part *inventory = NULL;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

72

Chapter 17: Advanced Uses of Pointers

Program: Maintaining a
Parts Database (Revisited)

•  Most of the functions in the new program will
closely resemble their counterparts in the original
program.

•  find_part and insert will be more complex,
however, since we’ll keep the nodes in the
inventory list sorted by part number.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

73

Chapter 17: Advanced Uses of Pointers

Program: Maintaining a
Parts Database (Revisited)

•  In the original program, find_part returns an
index into the inventory array.

•  In the new program, find_part will return a
pointer to the node that contains the desired part
number.

•  If it doesn’t find the part number, find_part
will return a null pointer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

74

Chapter 17: Advanced Uses of Pointers

Program: Maintaining a
Parts Database (Revisited)

•  Since the list of parts is sorted, find_part can stop
when it finds a node containing a part number that’s
greater than or equal to the desired part number.

•  find_part’s search loop:
 for (p = inventory;
 p != NULL && number > p->number;
 p = p->next)
 ;

•  When the loop terminates, we’ll need to test whether
the part was found:

 if (p != NULL && number == p->number)
 return p;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

75

Chapter 17: Advanced Uses of Pointers

Program: Maintaining a
Parts Database (Revisited)

•  The original version of insert stores a new part
in the next available array element.

•  The new version must determine where the new
part belongs in the list and insert it there.

•  It will also check whether the part number is
already present in the list.

•  A loop that accomplishes both tasks:
 for (cur = inventory, prev = NULL;
 cur != NULL && new_node->number > cur->number;
 prev = cur, cur = cur->next)
 ;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

76

Chapter 17: Advanced Uses of Pointers

Program: Maintaining a
Parts Database (Revisited)

•  Once the loop terminates, insert will check
whether cur isn’t NULL and whether
new_node->number equals cur->number.
–  If both are true, the part number is already in the list.
–  Otherwise, insert will insert a new node between the

nodes pointed to by prev and cur.

•  This strategy works even if the new part number is
larger than any in the list.

•  Like the original program, this version requires the
read_line function of Chapter 16.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

77

Chapter 17: Advanced Uses of Pointers

inventory2.c

/* Maintains a parts database (linked list version) */

#include <stdio.h>
#include <stdlib.h>
#include "readline.h"
#define NAME_LEN 25

struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 struct part *next;
};

struct part *inventory = NULL; /* points to first part */

struct part *find_part(int number);
void insert(void);
void search(void);
void update(void);
void print(void);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

78

Chapter 17: Advanced Uses of Pointers

/**
 * main: Prompts the user to enter an operation code, *
 * then calls a function to perform the requested *
 * action. Repeats until the user enters the *
 * command 'q'. Prints an error message if the user *
 * enters an illegal code. *

*/

int main(void)
{
 char code;

 for (;;) {
 printf("Enter operation code: ");
 scanf(" %c", &code);
 while (getchar() != '\n') /* skips to end of line */
 ;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

79

Chapter 17: Advanced Uses of Pointers

 switch (code) {
 case 'i': insert();
 break;
 case 's': search();
 break;
 case 'u': update();
 break;
 case 'p': print();
 break;
 case 'q': return 0;
 default: printf("Illegal code\n");
 }
 printf("\n");
 }
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

80

Chapter 17: Advanced Uses of Pointers

/**
 * find_part: Looks up a part number in the inventory *
 * list. Returns a pointer to the node *
 * containing the part number; if the part *
 * number is not found, returns NULL. *

*/

struct part *find_part(int number)
{
 struct part *p;

 for (p = inventory;
 p != NULL && number > p->number;
 p = p->next)
 ;
 if (p != NULL && number == p->number)
 return p;
 return NULL;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

81

Chapter 17: Advanced Uses of Pointers

/**
 * insert: Prompts the user for information about a new *
 * part and then inserts the part into the *
 * inventory list; the list remains sorted by *
 * part number. Prints an error message and *
 * returns prematurely if the part already exists *
 * or space could not be allocated for the part. *

*/

void insert(void)
{
 struct part *cur, *prev, *new_node;

 new_node = malloc(sizeof(struct part));
 if (new_node == NULL) {
 printf("Database is full; can't add more parts.\n");
 return;
 }

 printf("Enter part number: ");
 scanf("%d", &new_node->number);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

82

Chapter 17: Advanced Uses of Pointers

 for (cur = inventory, prev = NULL;
 cur != NULL && new_node->number > cur->number;
 prev = cur, cur = cur->next)
 ;
 if (cur != NULL && new_node->number == cur->number) {
 printf("Part already exists.\n");
 free(new_node);
 return;
 }

 printf("Enter part name: ");
 read_line(new_node->name, NAME_LEN);
 printf("Enter quantity on hand: ");
 scanf("%d", &new_node->on_hand);

 new_node->next = cur;
 if (prev == NULL)
 inventory = new_node;
 else
 prev->next = new_node;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

83

Chapter 17: Advanced Uses of Pointers

/**
 * search: Prompts the user to enter a part number, then *
 * looks up the part in the database. If the part *
 * exists, prints the name and quantity on hand; *
 * if not, prints an error message. *

*/

void search(void)
{
 int number;
 struct part *p;

 printf("Enter part number: ");
 scanf("%d", &number);
 p = find_part(number);
 if (p != NULL) {
 printf("Part name: %s\n", p->name);
 printf("Quantity on hand: %d\n", p->on_hand);
 } else
 printf("Part not found.\n");
} Copyright © 2008 W. W. Norton & Company.

All rights reserved.
84

Chapter 17: Advanced Uses of Pointers

/**
 * update: Prompts the user to enter a part number. *
 * Prints an error message if the part doesn't *
 * exist; otherwise, prompts the user to enter *
 * change in quantity on hand and updates the *
 * database. *

*/

void update(void)
{
 int number, change;
 struct part *p;

 printf("Enter part number: ");
 scanf("%d", &number);
 p = find_part(number);
 if (p != NULL) {
 printf("Enter change in quantity on hand: ");
 scanf("%d", &change);
 p->on_hand += change;
 } else
 printf("Part not found.\n");
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

85

Chapter 17: Advanced Uses of Pointers

/**
 * print: Prints a listing of all parts in the database, *
 * showing the part number, part name, and *
 * quantity on hand. Part numbers will appear in *
 * ascending order. *

*/

void print(void)
{
 struct part *p;
 printf("Part Number Part Name "
 "Quantity on Hand\n");
 for (p = inventory; p != NULL; p = p->next)
 printf("%7d %-25s%11d\n", p->number, p->name,
 p->on_hand);
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

86

Chapter 17: Advanced Uses of Pointers

Pointers to Pointers
•  Chapter 13 introduced the idea of a pointer to a

pointer.
•  The concept of “pointers to pointers” also pops up

frequently in the context of linked data structures.
•  In particular, when an argument to a function is a

pointer variable, we may want the function to be
able to modify the variable.

•  Doing so requires the use of a pointer to a pointer.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

87

Chapter 17: Advanced Uses of Pointers

Pointers to Pointers
•  The add_to_list function is passed a pointer

to the first node in a list; it returns a pointer to the
first node in the updated list:

 struct node *add_to_list(struct node *list, int n)
 {
 struct node *new_node;

 new_node = malloc(sizeof(struct node));
 if (new_node == NULL) {
 printf("Error: malloc failed in add_to_list\n");
 exit(EXIT_FAILURE);
 }
 new_node->value = n;
 new_node->next = list;
 return new_node;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

88

Chapter 17: Advanced Uses of Pointers

Pointers to Pointers
•  Modifying add_to_list so that it assigns
new_node to list instead of returning
new_node doesn’t work.

•  Example:
 add_to_list(first, 10);

•  At the point of the call, first is copied into
list.

•  If the function changes the value of list, making
it point to the new node, first is not affected.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

89

Chapter 17: Advanced Uses of Pointers

Pointers to Pointers
•  Getting add_to_list to modify first requires

passing add_to_list a pointer to first:
 void add_to_list(struct node **list, int n)
 {
 struct node *new_node;

 new_node = malloc(sizeof(struct node));
 if (new_node == NULL) {
 printf("Error: malloc failed in add_to_list\n");
 exit(EXIT_FAILURE);
 }
 new_node->value = n;
 new_node->next = *list;
 *list = new_node;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

90

Chapter 17: Advanced Uses of Pointers

Pointers to Pointers
•  When the new version of add_to_list is

called, the first argument will be the address of
first:

 add_to_list(&first, 10);

•  Since list is assigned the address of first, we
can use *list as an alias for first.

•  In particular, assigning new_node to *list will
modify first.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

91

Chapter 17: Advanced Uses of Pointers

Pointers to Functions
•  C doesn’t require that pointers point only to data;

it’s also possible to have pointers to functions.
•  Functions occupy memory locations, so every

function has an address.
•  We can use function pointers in much the same

way we use pointers to data.
•  Passing a function pointer as an argument is fairly

common.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

92

Chapter 17: Advanced Uses of Pointers

Function Pointers as Arguments
•  A function named integrate that integrates a

mathematical function f can be made as general as
possible by passing f as an argument.

•  Prototype for integrate :
 double integrate(double (*f)(double),
 double a, double b);

 The parentheses around *f indicate that f is a
pointer to a function.

•  An alternative prototype:
 double integrate(double f(double),
 double a, double b);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

93

Chapter 17: Advanced Uses of Pointers

Function Pointers as Arguments
•  A call of integrate that integrates the sin

(sine) function from 0 to π/2:
 result = integrate(sin, 0.0, PI / 2);

•  When a function name isn’t followed by
parentheses, the C compiler produces a pointer to
the function.

•  Within the body of integrate, we can call the
function that f points to:

 y = (*f)(x);

•  Writing f(x) instead of (*f)(x) is allowed.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

94

Chapter 17: Advanced Uses of Pointers

The qsort Function
•  Some of the most useful functions in the C library

require a function pointer as an argument.
•  One of these is qsort, which belongs to the
<stdlib.h> header.

•  qsort is a general-purpose sorting function
that’s capable of sorting any array.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

95

Chapter 17: Advanced Uses of Pointers

The qsort Function
•  qsort must be told how to determine which of

two array elements is “smaller.”
•  This is done by passing qsort a pointer to a

comparison function.
•  When given two pointers p and q to array

elements, the comparison function must return an
integer that is:
–  Negative if *p is “less than” *q
–  Zero if *p is “equal to” *q
–  Positive if *p is “greater than” *q

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

96

Chapter 17: Advanced Uses of Pointers

The qsort Function
•  Prototype for qsort:
 void qsort(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

•  base must point to the first element in the array
(or the first element in the portion to be sorted).

•  nmemb is the number of elements to be sorted.
•  size is the size of each array element, measured

in bytes.
•  compar is a pointer to the comparison function.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

97

Chapter 17: Advanced Uses of Pointers

The qsort Function
•  When qsort is called, it sorts the array into

ascending order, calling the comparison function
whenever it needs to compare array elements.

•  A call of qsort that sorts the inventory array
of Chapter 16:

 qsort(inventory, num_parts,
 sizeof(struct part), compare_parts);

•  compare_parts is a function that compares
two part structures.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

98

Chapter 17: Advanced Uses of Pointers

The qsort Function
•  Writing the compare_parts function is tricky.
•  qsort requires that its parameters have type
void *, but we can’t access the members of a
part structure through a void * pointer.

•  To solve the problem, compare_parts will
assign its parameters, p and q, to variables of type
struct part *.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

99

Chapter 17: Advanced Uses of Pointers

The qsort Function
•  A version of compare_parts that can be used

to sort the inventory array into ascending order
by part number:

 int compare_parts(const void *p, const void *q)
 {
 const struct part *p1 = p;
 const struct part *q1 = q;

 if (p1->number < q1->number)
 return -1;
 else if (p1->number == q1->number)
 return 0;
 else
 return 1;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

100

Chapter 17: Advanced Uses of Pointers

The qsort Function
•  Most C programmers would write the function

more concisely:
 int compare_parts(const void *p, const void *q)
 {
 if (((struct part *) p)->number <
 ((struct part *) q)->number)
 return -1;
 else if (((struct part *) p)->number ==
 ((struct part *) q)->number)
 return 0;
 else
 return 1;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

101

Chapter 17: Advanced Uses of Pointers

The qsort Function
•  compare_parts can be made even shorter by

removing the if statements:
 int compare_parts(const void *p, const void *q)
 {
 return ((struct part *) p)->number -
 ((struct part *) q)->number;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

102

Chapter 17: Advanced Uses of Pointers

The qsort Function
•  A version of compare_parts that can be used

to sort the inventory array by part name
instead of part number:

 int compare_parts(const void *p, const void *q)
 {
 return strcmp(((struct part *) p)->name,
 ((struct part *) q)->name);
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

103

Chapter 17: Advanced Uses of Pointers

Other Uses of Function Pointers
•  Although function pointers are often used as

arguments, that’s not all they’re good for.
•  C treats pointers to functions just like pointers to

data.
•  They can be stored in variables or used as

elements of an array or as members of a structure
or union.

•  It’s even possible for functions to return function
pointers.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

104

Chapter 17: Advanced Uses of Pointers

Other Uses of Function Pointers
•  A variable that can store a pointer to a function

with an int parameter and a return type of void:
 void (*pf)(int);

•  If f is such a function, we can make pf point to f
in the following way:

 pf = f;

•  We can now call f by writing either
 (*pf)(i);

 or
 pf(i);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

105

Chapter 17: Advanced Uses of Pointers

Other Uses of Function Pointers
•  An array whose elements are function pointers:
 void (*file_cmd[])(void) = {new_cmd,
 open_cmd,
 close_cmd,
 close_all_cmd,
 save_cmd,
 save_as_cmd,
 save_all_cmd,
 print_cmd,
 exit_cmd
 };

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

106

Chapter 17: Advanced Uses of Pointers

Other Uses of Function Pointers
•  A call of the function stored in position n of the
file_cmd array:

 (*file_cmd[n])(); /* or file_cmd[n]();

*/

•  We could get a similar effect with a switch
statement, but using an array of function pointers
provides more flexibility.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

107

Chapter 17: Advanced Uses of Pointers

Program: Tabulating the Trigonometric Functions

•  The tabulate.c program prints tables showing
the values of the cos, sin, and tan functions.

•  The program is built around a function named
tabulate that, when passed a function pointer
f, prints a table showing the values of f.

•  tabulate uses the ceil function.
•  When given an argument x of double type,
ceil returns the smallest integer that’s greater
than or equal to x.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

108

Chapter 17: Advanced Uses of Pointers

Program: Tabulating the Trigonometric Functions

•  A session with tabulate.c:
 Enter initial value: 0
 Enter final value: .5
 Enter increment: .1

 x cos(x)
 ------- -------
 0.00000 1.00000
 0.10000 0.99500
 0.20000 0.98007
 0.30000 0.95534
 0.40000 0.92106
 0.50000 0.87758

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

109

Chapter 17: Advanced Uses of Pointers

Program: Tabulating the Trigonometric Functions
 x sin(x)
 ------- -------
 0.00000 0.00000
 0.10000 0.09983
 0.20000 0.19867
 0.30000 0.29552
 0.40000 0.38942
 0.50000 0.47943

 x tan(x)
 ------- -------
 0.00000 0.00000
 0.10000 0.10033
 0.20000 0.20271
 0.30000 0.30934
 0.40000 0.42279
 0.50000 0.54630

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

110

Chapter 17: Advanced Uses of Pointers

tabulate.c

/* Tabulates values of trigonometric functions */

#include <math.h>
#include <stdio.h>

void tabulate(double (*f)(double), double first,
 double last, double incr);

int main(void)
{
 double final, increment, initial;

 printf("Enter initial value: ");
 scanf("%lf", &initial);

 printf("Enter final value: ");
 scanf("%lf", &final);

 printf("Enter increment: ");
 scanf("%lf", &increment);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

111

Chapter 17: Advanced Uses of Pointers

 printf("\n x cos(x)"
 "\n ------- -------\n");
 tabulate(cos, initial, final, increment);

 printf("\n x sin(x)"
 "\n ------- -------\n");
 tabulate(sin, initial, final, increment);

 printf("\n x tan(x)"
 "\n ------- -------\n");
 tabulate(tan, initial, final, increment);

 return 0;
}

void tabulate(double (*f)(double), double first,
 double last, double incr)
{
 double x;
 int i, num_intervals;

 num_intervals = ceil((last - first) / incr);
 for (i = 0; i <= num_intervals; i++) {
 x = first + i * incr;
 printf("%10.5f %10.5f\n", x, (*f)(x));
 }
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

112

Chapter 17: Advanced Uses of Pointers

Restricted Pointers (C99)
•  In C99, the keyword restrict may appear in

the declaration of a pointer:
 int * restrict p;

 p is said to be a restricted pointer.
•  The intent is that if p points to an object that is

later modified, then that object is not accessed in
any way other than through p.

•  Having more than one way to access an object is
often called aliasing.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

113

Chapter 17: Advanced Uses of Pointers

Restricted Pointers (C99)
•  Consider the following code:
 int * restrict p;
 int * restrict q;
 p = malloc(sizeof(int));

•  Normally it would be legal to copy p into q and
then modify the integer through q:

 q = p;
 q = 0; / causes undefined behavior */

•  Because p is a restricted pointer, the effect of
executing the statement *q = 0; is undefined.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

114

Chapter 17: Advanced Uses of Pointers

Restricted Pointers (C99)
•  To illustrate the use of restrict, consider the
memcpy and memmove functions.

•  The C99 prototype for memcpy, which copies
bytes from one object (pointed to by s2) to
another (pointed to by s1):

 void *memcpy(void * restrict s1,
 const void * restrict s2,
 size_t n);

•  The use of restrict with both s1 and s2
indicates that the objects to which they point
shouldn’t overlap.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

115

Chapter 17: Advanced Uses of Pointers

Restricted Pointers (C99)
•  In contrast, restrict doesn’t appear in the

prototype for memmove:
 void *memmove(void *s1, const void *s2,
 size_t n);

•  memmove is similar to memcpy, but is guaranteed
to work even if the source and destination overlap.

•  Example of using memmove to shift the elements
of an array:

 int a[100];
 …
 memmove(&a[0], &a[1], 99 * sizeof(int));

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

116

Chapter 17: Advanced Uses of Pointers

Restricted Pointers (C99)
•  Prior to C99, there was no way to document the

difference between memcpy and memmove.
•  The prototypes for the two functions were nearly

identical:
 void *memcpy(void *s1, const void *s2,
 size_t n);
 void *memmove(void *s1, const void *s2,
 size_t n);

•  The use of restrict in the C99 version of
memcpy’s prototype is a warning that the s1 and
s2 objects should not overlap.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

117

Chapter 17: Advanced Uses of Pointers

Restricted Pointers (C99)
•  restrict provides information to the compiler

that may enable it to produce more efficient code
—a process known as optimization.

•  The C99 standard guarantees that restrict has
no effect on the behavior of a program that
conforms to the standard.

•  Most programmers won’t use restrict unless
they’re fine-tuning a program to achieve the best
possible performance.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

118

Chapter 17: Advanced Uses of Pointers

Flexible Array Members (C99)
•  Occasionally, we’ll need to define a structure that

contains an array of an unknown size.
•  For example, we might want a structure that stores

the characters in a string together with the string’s
length:

 struct vstring {
 int len;
 char chars[N];
 };

•  Using a fixed-length array is undesirable: it limits
the length of the string and wastes memory.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

119

Chapter 17: Advanced Uses of Pointers

Flexible Array Members (C99)
•  C programmers traditionally solve this problem by

declaring the length of chars to be 1 and then
dynamically allocating each string:

 struct vstring {
 int len;
 char chars[1];
 };
 …
 struct vstring *str =
 malloc(sizeof(struct vstring) + n - 1);
 str->len = n;

•  This technique is known as the “struct hack.”
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

120

Chapter 17: Advanced Uses of Pointers

Flexible Array Members (C99)
•  The struct hack is supported by many compilers.
•  Some (including GCC) even allow the chars

array to have zero length.
•  The C89 standard doesn’t guarantee that the struct

hack will work, but a C99 feature known as the
flexible array member serves the same purpose.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

121

Chapter 17: Advanced Uses of Pointers

Flexible Array Members (C99)
•  When the last member of a structure is an array, its

length may be omitted:
 struct vstring {
 int len;
 char chars[]; /* flexible array member - C99 only */
 };

•  The length of the array isn’t determined until memory
is allocated for a vstring structure:

 struct vstring *str =
 malloc(sizeof(struct vstring) + n);
 str->len = n;

 sizeof ignores the chars member when computing
the size of the structure.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

122

Chapter 17: Advanced Uses of Pointers

Flexible Array Members (C99)
•  Special rules for structures that contain a flexible

array member:
–  The flexible array must be the last member.
–  The structure must have at least one other member.

•  Copying a structure that contains a flexible array
member will copy the other members but not the
flexible array itself.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

123

Chapter 17: Advanced Uses of Pointers

Flexible Array Members (C99)
•  A structure that contains a flexible array member is

an incomplete type.
•  An incomplete type is missing part of the

information needed to determine how much memory
it requires.

•  Incomplete types are subject to various restrictions.
•  In particular, an incomplete type can’t be a member

of another structure or an element of an array.
•  However, an array may contain pointers to

structures that have a flexible array member.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

124

