Chapter 19

Program Design

C PROGRANMMING :

A Modern Approach secono eoirion

Introduction

* Most full-featured programs are at least 100,000
lines long.

e Although C wasn' t designed for writing large
programs, many large programs have been written
in C.

* Writing large programs 1s quite different from
writing small ones.

C PROGRANMMING 2

A Modern Approach stcono eoimion

Introduction

* Issues that arise when writing a large program:
— Style
— Documentation
— Maintenance
— Design
* This chapter focuses on design techniques that can
make C programs readable and maintainable.

C PROGRANMMING 3

A Modern Approach stcono eoimion

Modules

It" s often useful to view a program as a number of
independent modules.

A module 1s a collection of services, some of
which are made available to other parts of the
program (the clients).

Each module has an inferface that describes the
available services.

The details of the module—including the source
code for the services themselves—are stored in the
module’ s implementation.

C PROGRANMMING 4

A Modern Approach stcono eoimion

Modules

o In the context of C, “services” are functions.

* The interface of a module 1s a header file
containing prototypes for the functions that will be
made available to clients (source files).

* The implementation of a module is a source file
that contains definitions of the module’ s
functions.

C PROGRANMMING 5

A Modern Approach stcono eoimion

Modules

The calculator program sketched in Chapter 15
consists of:

— calc.c, which contains the main function
— A stack module, stored in stack.h and stack.c

calc.c 1s a client of the stack module.
stack.h 1s the interface of the stack module.

stack. c 1s the implementation of the module.

C PROGRANMMING 6

A Modern Approach stcono eoimion

int pop

#include "stack.h"

int main (void)

{

make empty () ;

.

calc.c

C PROGRANMMING

A Modern App‘W'OCLC/’L SECOND EDITION

#include <stdbool.hs>

void make empty (void) ;
bool is empty(void) ;
bool is full (void) ;
void push(int 1i);

(void) ;

stack.h

#include "stack.h"

int contents[100];
int top = 0;

void make empty (void)

{ .}
bool is empty (void)
{ ..}

bool is full (void)

{0

void push (int 1)

{)

int pop (void)

stack.c

Modules

* The C library 1s itself a collection of modules.

* Each header in the library serves as the interface
to a module.

— <stdio.h> 1s the interface to a module containing I/
O functions.

— <string.h> 1s the interface to a module containing
string-handling functions.

C PROGRANMMING :

A Modern Approach stcono eoimion

Modules

* Advantages of dividing a program into modules:
— Abstraction
— Reusability
— Maintainability

C PROGRANMMING 9

A Modern Approach secono eoirion

Modules

Abstraction. A properly designed module can be
treated as an abstraction; we know what 1t does,
but we don’ t worry about how it works.

Thanks to abstraction, it’ s not necessary to
understand how the entire program works in order
to make changes to one part of it.

Abstraction also makes it easier for several
members of a team to work on the same program.

C PROGRANMMING 10

A Modern Approach stcono eoimion

Modules

* Reusability. Any module that provides services 1s
potentially reusable 1n other programes.

» Since it’ s often hard to anticipate the future uses

of a module, it’ s a good idea to design modules
for reusability.

C PROGRANMMING 11

A Modern Approach stcono eoimion

Modules

Maintainability. A small bug will usually affect
only a single module implementation, making the
bug easier to locate and fix.

Rebuilding the program requires only a
recompilation of the module implementation
(followed by linking the entire program).

An entire module implementation can be replaced
if necessary.

C PROGRANMMING 12

A Modern Approach stcono eoimion

Modules

Maintainability 1s the most critical advantage.

Most real-world programs are in service over a
period of years

During this period, bugs are discovered,
enhancements are made, and modifications are
made to meet changing requirements.

Designing a program in a modular fashion makes
maintenance much easier.

C PROGRANMMING 13

A Modern Approach stcono eoimion

Modules

* Decisions to be made during modular design:
— What modules should a program have?
— What services should each module provide?
— How should the modules be interrelated?

C PROGRANMMING 14

A Modern Approach stcono eoimion

Cohesion and Coupling

* In a well-designed program, modules should have
two properties.
* High cohesion. The elements of each module

should be closely related to one another.

— High cohesion makes modules easier to use and makes
the entire program easier to understand.

* Low coupling. Modules should be as independent

of each other as possible.

— Low coupling makes it easier to modify the program
and reuse modules.

C PROGRANMMING 15

A Modern Approach stcono eoimion

Types of Modules

* Modules tend to fall into certain categories:
— Data pools
— Libraries
— Abstract objects
— Abstract data types

C PROGRANMMING 16

A Modern Approach stcono eoimion

Types of Modules

* A data pool 1s a collection of related variables
and/or constants.

— In C, a module of this type is often just a header file.
— <float.h>and <limits.h> are both data pools.
* A library 1s a collection of related functions.

— <string.h> is the interface to a library of string-
handling functions.

C PROGRANMMING 17

A Modern Approach stcono eoimion

Types of Modules

* An abstract object 1s a collection of functions that
operate on a hidden data structure.

* An abstract data type (ADT) 1s a type whose
representation 1s hidden.

— Client modules can use the type to declare variables but
have no knowledge of the structure of those variables.

— To perform an operation on such a variable, a client
must call a function provided by the ADT.

C PROGRANMMING 18

A Modern Approach stcono eoimion

Information Hiding

* A well-designed module often keeps some
information secret from its clients.

— Clients of the stack module have no need to know
whether the stack 1s stored in an array, in a linked list,
or in some other form.

* Deliberately concealing information from the
clients of a module is known as information
hiding.

C PROGRANMMING T:

A Modern Approach stcono eoimion

Information Hiding

* Primary advantages of information hiding:

— Security. If clients don’ t know how a module stores its
data, they won’ t be able to corrupt it by tampering with
its internal workings.

— Flexibility. Making changes—no matter how large—to
a module’ s internals won’ t be difficult.

C PROGRANMMING 20

A Modern Approach stcono eoimion

Information Hiding

* In C, the major tool for enforcing information
hiding 1s the static storage class.
— A static variable with file scope has internal

linkage, preventing it from being accessed from other
files, including clients of the module.

— A static function can be directly called only by
other functions in the same file.

C PROGRANMMING 21

A Modern Approach stcono eoimion

A Stack Module

To see the benefits of information hiding, let’ s
look at two implementations of a stack module,
one using an array and the other a linked list.

stack.h is the module’ s header file.

stackl . c uses an array to implement the stack.

C PROGRANMMING 22

A Modern Approach stcono eoimion

stack.h

#ifndef STACK H
#define STACK H

#include <stdbool.h> /* C99 only */

volid make empty(void);
bool 1s empty(void);
bool 1s full (void);
volid push(int 1);

int pop(void);

#fendif

C PROGRAMMING 23

A Modern Approach secono eoirion

stackl.c

#include <stdio.h>
#include <stdlib.h>
#include "stack.h"

#define STACK SIZE 100

static int contents[STACK SIZE];
static int top = 0;

static vold terminate (const char *message)

{

printf ("$s\n", message);
exit (EXIT_FAILURE) ;
}

void make empty (void)

{
top = 0O;

)
C PROGRAMMING 24

A Modern Approach secono eoirion

bool 1s empty(void)
{

return top == 0;

}

bool 1s full (void)

{
return top == STACK SIZE;

}

void push (int 1)

{
1f (is full())

terminate ("Error in push:

contents[topt+] = 1;
}

int pop (void)

{
1f (1s _empty())

terminate ("Error in pop:
return contents[--top];

)
C PROGRANMMING 25

A Modern Approach secono eoirion

stack 1is full.");

stack is empty.");

A Stack Module

* Macros can be used to indicate whether a function
or variable is “public” (accessible elsewhere in the
program) or " private” (limited to a single file):

#define PUBLIC /* empty */
#define PRIVATE static

 The word static has more than one use in C;
PRIVATE makes it clear that we’ re using it to
enforce information hiding.

C PROGRANMMING 26

A Modern Approach stcono eoimion

A Stack Module

« The stack implementation redone using PUBLIC and
PRIVATE:

PRIVATE int contents[STACK SIZE];
PRIVATE 1int top = 0;

PRIVATE void terminate (const char *message) { ..
PUBLIC void make empty(void) { .. }
PUBLIC bool is empty(void) { .. }
PUBLIC bool 1is full(void) { ..}
PUBLIC void push(int 1) { .. }

PUBLIC int pop(void) { .. }

C PROGRANMMING 27

A Modern Approach secono eoirion

A Stack Module

 stack?2. c i1s a linked-list implementation of the
stack module.

C PROGRANMMING 28

A Modern Approach stcono eoimion

stack2.c

#include <stdio.h>
#include <stdlib.h>
#include "stack.h"

struct node {
int data;
struct node *next;

I

static struct node *top = NULL;

static voild terminate (const char *message)
printf ("%$s\n", message);

exit (EXIT FAILURE) ;
} —

void make empty (void)

while (!is empty())
pop () 7

C PROGRANMMING 29

A Modern Approach secono eoirion

bool 1s empty(void)

{
return top == NULL;

bool 1s full (void)
{

return false;

volid push (int 1)

{

struct node *new node = malloc(sizeof (struct node));
if (new node == NULL)
terminate ("Error in push: stack is full.");
new node->data = 1i;
new node->next = top;
top = new node;

)
C PROGRANMMING 30

A Modern Approach secono eoirion

int pop(void)

{
struct node *old top;
int 1i;

1f (1s empty())
terminate ("Error 1n pop: stack is empty.");

old top = top;

1 = top->data;
top = top->next;
free(old top);
return 1;

C PROGRANMMING 31

A Modern Approach secono eoirion

A Stack Module

Thanks to information hiding, it doesn’ t matter
whether we use stackl.cor stack2.cto
implement the stack module.

Both versions match the module’ s interface, so we
can switch from one to the other without having to
make changes elsewhere 1n the program.

C PROGRANMMING 32

A Modern Approach stcono eoimion

Abstract Data Types

* A module that serves as an abstract object has a
serious disadvantage: there’ s no way to have
multiple instances of the object.

 To accomplish this, we’ 1l need to create a new

type.

* For example, a Stack type can be used to create
any number of stacks.

C PROGRANMMING 33

A Modern Approach stcono eoimion

Abstract Data Types

* A program fragment that uses two stacks:
Stack sl1, s2;

make empty (&sl);
make empty (&s2);
push (&sl1, 1);
push (&s2, 2);
if (!1is empty (&sl))
printf ("$d\n", pop(&sl)); /* prints "1" */

 To clients, s1 and s2 are abstractions that
respond to certain operations (make empty,
is empty,is full, push, and pop).

C PROGRANMMING 34

A Modern Approach secono eoirion

Abstract Data Types

* Converting the stack.h header so that 1t
provides a Stack type requires adding a Stack
(or Stack *) parameter to each function.

C PROGRANMMING 35

A Modern Approach secono eoirion

Abstract Data Types

* Changes to stack.h are shown in bold:
#define STACK SIZE 100

typedef struct {
int contents[STACK SIZE];
int top;

} Stack;

vold make empty(Stack *s);
bool 1s empty(const Stack *s);
bool 1s full (const Stack *s);
vold push (Stack *s, int 1);
int pop(Stack *s);

C PROGRANMMING 36

A Modern Approach stcono eoimion

Abstract Data Types

* The stack parameters to make empty, push,
and pop need to be pointers, since these functions
modify the stack.

* The parameterto is emptyand is full
doesn’ t need to be a pointer.

» Passing these functions a Stack pointer instead
of a Stack value 1s done for efficiency, since the
latter would result 1n a structure being copied.

C PROGRANMMING 37

A Modern Approach stcono eoimion

Encapsulation

 Unfortunately, Stack isn’ t an abstract data type,
since stack.h reveals what the Stack type

really 1s.

* Nothing prevents clients from using a Stack
variable as a structure:
Stack s1;

sl.top = 0;
sl.contents|[top++] = 1;

* Providing access to the top and contents
members allows clients to corrupt the stack.

C PROGRANMMING 38

A Modern Approach stcono eoimion

Encapsulation

Worse still, we can’ t change the way stacks are
stored without having to assess the effect of the
change on clients.

What we need 1s a way to prevent clients from
knowing how the Stack type 1s represented.

C has only limited support for encapsulating
types in this way.

Newer C-based languages, including C++, Java,
and C#, are better equipped for this purpose.

C PROGRANMMING 39

A Modern Approach stcono eoimion

Incomplete Types

The only tool that C gives us for encapsulation 1s
the incomplete type.

Incomplete types are “types that describe objects
but lack information needed to determine their
sizes.”

Example:
struct t; /* incomplete declaration of t */

The 1ntent 1s that an incomplete type will be
completed elsewhere 1n the program.

C PROGRANMMING 40

A Modern Approach stcono eoimion

Incomplete Types

An incomplete type can’ t be used to declare a
variable:

struct t s; J*** WRONG ***/

However, it s legal to define a pointer type that
references an incomplete type:

typedef struct t *T;
We can now declare variables of type T, pass them

as arguments to functions, and perform other
operations that are legal for pointers.

C PROGRANMMING 41

A Modern Approach stcono eoimion

A Stack Abstract Data Type

* The following stack ADT will illustrate how
abstract data types can be encapsulated using
incomplete types.

* The stack will be implemented 1n three different
ways.

C PROGRANMMING 42

A Modern Approach secono eoirion

Defining the Interface for the Stack ADT

 stackADT. h defines the stack ADT type and
gives prototypes for the functions that represent

stack operations.

 The Stack type will be a pointer to a
stack type structure (an incomplete type).

* The members of this structure will depend on how
the stack 1s implemented.

C PROGRAMMING 43

A Modern Approach secono eoirion

stackADT.h

(version 1)

#ifndef STACKADT H
#define STACKADT H

#include <stdbool.h> /* C99 only */
typedef struct stack type *Stack;

Stack create (void) ;

vold destroy(Stack s);
void make empty(Stack s);
bool 1s empty(Stack s);
bool 1s full (Stack s);
void push(Stack s, 1int 1);
int pop(Stack s);

#fendif

C PROGRANMMING 44

A Modern Approach stcono eoimion

Defining the Interface for the Stack ADT

Clients that include stackADT . h will be able to
declare variables of type Stack, each of which 1s
capable of pointing to a stack type structure.

Clients can then call the functions declared in
stackADT.h to perform operations on stack
variables.

However, clients can’ t access the members of the
stack type structure, since that structure will
be defined 1n a separate file.

C PROGRANMMING 45

A Modern Approach stcono eoimion

Defining the Interface for the Stack ADT

A module generally doesn’ t need create and
destroy functions, but an ADT does.

— create dynamically allocates memory for a stack and
initializes the stack to its “empty’ state.

— destroy releases the stack’ s dynamically allocated
memory.

C PROGRANMMING 46

A Modern Approach secono eoirion

Defining the Interface for the Stack ADT

e stackclient.c can be used to test the stack
ADT.

* It creates two stacks and performs a variety of
operations on them.

C PROGRANMMING 47

A Modern Approach stcono eoimion

stackclient.c

#include <stdio.h>
#include "stackADT.h"

int main (void)

{
Stack sl, s2;

int n;
sl = create();
s2 = createl();

push(sl, 1);
push (sl, 2);

n = pop(sl);
printf ("Popped %d from sl\n", n);
push (s2, n);

C PROGRAMMING 48

A Modern Approach secono eoirion

n = pop(sl);
printf ("Popped %d from sl\n", n);
push (s2, n);

destroy (sl) ;

while (!is empty(s2))
printf ("Popped %$d from s2\n", pop(s2));

push (s2, 3);
make empty(s2);
if (1s empty(s2))
printf ("s2 is empty\n");
else
printf ("s2 is not empty\n"):;

destroy (s2);

return 0;

)
C PROGRANMMING 49

A Modern Approach secono eoirion

Defining the Interface for the Stack ADT

* Output 1f the stack ADT is implemented correctly:

Popped 2 from sl
Popped 1 from sl
Popped 1 from sZ
Popped 2 from sZ
sZ2 1s empty

C PROGRANMMING 50

A Modern Approach stcono eoimion

Implementing the Stack ADT
Using a Fixed-Length Array

* There are several ways to implement the stack
ADT.

* The simplest is to have the stack type
structure contain a fixed-length array:

struct stack type {
int contents[STACK SIZE];
int top;

I

C PROGRANMMING 51

A Modern Approach stcono eoimion

stackADT.c

#include <stdio.h>
#include <stdlib.h>
#include "stackADT.h"

#define STACK SIZE 100

struct stack type {
int contents[STACK SIZE];
int top;

b

static vold terminate (const char *message)

{
printf ("$s\n", message);
exit (EXIT_FAILURE) ;

}

C PROGRANMMING 52

A Modern Approach secono eoirion

Stack create (void)

{

Stack s = malloc(sizeof (struct stack type));
i1f (s == NULL)
terminate ("Error in create: stack could not be created.");
s->top = 0;
return s;

}

vold destroy(Stack s)
{

free(s);

}

void make empty (Stack s)

{
s->top = 0;
}

bool 1s empty (Stack s)
{

return s->top == 0;

)
C PROGRANMMING 53

A Modern Approach secono eoirion

bool 1s full (Stack s)

{
return s->top == STACK SIZE;

volid push (Stack s, int 1)
{
1f (1s full(s))
terminate ("Error in push: stack is full.");
s->contents[s—->top++] = 1i;

int pop (Stack s)
{
1f (is empty(s))
terminate ("Error 1n pop: stack is empty.");
return s->contents[--s->top];

C PROGRANMMING 54

A Modern Approach secono eoirion

Changing the ltem Type in the Stack ADT

 stackADT. c requires that stack items be
integers, which 1s too restrictive.

* To make the stack ADT easier to modify for
different item types, let’ s add a type definition to
the stackADT.h header.

It will define a type named I tem, representing the
type of data to be stored on the stack.

C PROGRANMMING 55

A Modern Approach secono eoirion

stackADT.h

(version 2)

#ifndef STACKADT H
#define STACKADT H

#include <stdbool.h> /* C99 only */

typedef int Item;

typedef struct stack type *Stack;

Stack create (void) ;

void
void
bool
bool
void
Item

destroy (Stack s);

make empty (Stack s);
is empty (Stack s);

is full (Stack s);

push (Stack s, Item 1);
pop (Stack s);

#fendif
C PROGRANMMING 56

A Modern Approach stcono eoimion

Changing the ltem Type in the Stack ADT

e The stackADT. c file will need to be modified,
but the changes are minimal.

* The updated stack type structure:

struct stack type {
Item contents[STACK SIZE];
int top; B
yi
* The second parameter of push will now have
type Ltem.

* pop now returns a value of type I tem.

C PROGRANMMING 57

A Modern Approach secono eoirion

Changing the ltem Type in the Stack ADT

e The stackclient. c file can be used to test the
new stackADT.h and stackADT. c to verity
that the Stack type still works.

» The 1item type can be changed by modifying the
definition of Ttemin stackADT.h.

C PROGRANMMING 58

A Modern Approach stcono eoimion

Implementing the Stack ADT
Using a Dynamic Array

* Another problem with the stack ADT: each stack
has a fixed maximum size.

 There’ s no way to have stacks with different
capacities or to set the stack size as the program i1s
running.

* Possible solutions to this problem:

— Implement the stack as a linked list.
— Store stack items in a dynamically allocated array.

C PROGRANMMING 5

A Modern Approach secono eoirion

Implementing the Stack ADT
Using a Dynamic Array

* The latter approach involves modifying the
stack type structure.

 The contents member becomes a pointer to the
array 1n which the items are stored:

struct stack type {
Item *contents;
int top;
int size;
¥
» The size member stores the stack’ s maximum

S1Ze.
C PROGRANMMING 60

A Modern Approach secono eoirion

Implementing the Stack ADT
Using a Dynamic Array

* The create function will now have a parameter
that specifies the desired maximum stack size:

Stack create (int size);

e When create 1s called, 1t will create a
stack type structure plus an array of length
size.

 The contents member of the structure will
point to this array.

C PROGRANMMING 61

A Modern Approach secono eoirion

Implementing the Stack ADT
Using a Dynamic Array

 stackADT.h will be the same as before, except
that create will have a size parameter.

 The new version will be named stackADT2. h.

e stackADT. c will need more extensive
modification, yielding stackADT2. c.

C PROGRANMMING 62

A Modern Approach stcono eoimion

stackADT2.c

#include <stdio.h>
#include <stdlib.h>
#include "stackADT2.h"

struct stack type {
Item *contents;
int top;
int size;

s

static vold terminate (const char *message)

{

printf ("$s\n", message);
exit (EXIT FAILURE) ;

C PROGRANMMING 63

A Modern Approach stcono eoimion

Stack create(int size)

{
Stack s =

if (s == NULL)
terminate ("Error in create: stack could not be created.");

s->contents = malloc(size * sizeof(Item));
if (s->contents == NULL) {

free(s);
terminate ("Error in create:
}
s->top = 0;
s->size = size;
return s;

malloc (sizeof (struct stack type));

stack could not be created.");

vold destroy (Stack s)

{
free (s->contents) ;

free(s);

C PROGRANMMING 64

A Modern Approach stcono eoimion

void make empty (Stack s)

{
s->top = 0O;

bool 1s empty (Stack s)
{

return s->top == 0;

bool 1s full (Stack s)
{

return s->top == s->size;

C PROGRANMMING

A Modern Approach stcono eoimion

65

vold push (Stack s, Item 1)

{
1f (is full(s))
terminate ("Error in push: stack is full.");
s—->contents[s->topt++] = 1i;

Ttem pop (Stack s)
{
1f (is _empty(s))
terminate ("Error in pop: stack is empty.");
return s->contents[--s->top];

C PROGRANMMING 66

A Modern Approach secono eoirion

Implementing the Stack ADT
Using a Dynamic Array

 The stackclient. c file can again be used to
test the stack ADT.

* The calls of create will need to be changed,
since create now requires an argument.

« Example:

sl = create(100) ;
s?2 = create (200) ;

C PROGRAMMING 67

A Modern Approach stcono eoimion

Implementing the Stack ADT
Using a Linked List

* Implementing the stack ADT using a dynamically
allocated array provides more flexibility than
using a fixed-size array.

« However, the client is still required to specify a
maximum size for a stack at the time it’ s created.

 With a linked-list implementation, there won' t be
any preset limit on the size of a stack.

C PROGRANMMING 68

A Modern Approach secono eoirion

Implementing the Stack ADT
Using a Linked List

* The linked list will consist of nodes, represented
by the following structure:
struct node {

ITtem data;
struct node *next;

b
* The stack type structure will contain a pointer
to the first node 1n the list:

struct stack type {
struct node *top;

Y
C PROGRANMMING 69

A Modern Approach stcono eoimion

Implementing the Stack ADT
Using a Linked List

* The stack type structure seems supertluous,
since Stack could be defined to be struct

node *,.

* However, stack type 1s needed so that the
interface to the stack remains unchanged.

* Moreover, having the stack type structure
will make 1t easier to change the implementation
in the future.

C PROGRANMMING 70

A Modern Approach secono eoirion

Implementing the Stack ADT
Using a Linked List

* Implementing the stack ADT using a linked list
involves modifying the stackADT. c file to
create a new version named stackADT3. c.

 The stackADT.h header is unchanged.

» The original stackclient. c file can be used
for testing.

C PROGRANMMING 71

A Modern Approach stcono eoimion

stackADT3.c

#include <stdio.h>
#include <stdlib.h>
#include "stackADT.h"

struct node {
Item data;
struct node *next;

s

struct stack type {
struct node *top;

s

static vold terminate (const char *message)

{

printf ("%$s\n", message);
exit (EXIT_FAILURE) ;
}

C PROGRANMMING 72

A Modern Approach secono eoirion

Stack create (void)

{

Stack s =
if (s == NULL)

terminate ("Error 1in create:
s—->top = NULL;

return s;

volid destroy(Stack s)

{
make empty(s);
free(s);

void make empty (Stack s)

{
while (!is empty(s))

pop (s) ;

C PROGRANMMING 73

A Modern Approach secono eoirion

malloc (sizeof (struct stack type));

stack could not be created."m);

bool 1s empty(Stack s)

{
return s—->top == NULL;

bool 1s full (Stack s)
{

return false;

vold push (Stack s, Item 1)
{

struct node *new node = malloc(sizeof (struct node));
if (new node == NULL)
terminate ("Error in push: stack is full.");

new node->data = 1i;
new node->next = s->top;
s—->top = new node;

C PROGRANMMING 74

A Modern Approach secono eoirion

Ttem pop (Stack s)

{

struct node *old top;
Ttem 1;

1f (i1s empty(s))

terminate ("Error 1n pop:

old top = s->top;

1 = old top->data;
s->top = old top->next;
free(old top);

return 1i;

C PROGRANMMING

A Modern Approach secono eoirion

stack 1is empty.");

75

Design Issues for Abstract Data Types

* The stack ADT suffers from several problems that
prevent it from being industrial-strength.

C PROGRANMMING 76

A Modern Approach stcono eoimion

Naming Conventions

* The stack ADT functions currently have short,
casy-to-understand names, such as create.

» If a program has more than one ADT, name
clashes are likely.

* It will probably be necessary for function names to
incorporate the ADT name (stack create).

C PROGRANMMING 77

A Modern Approach stcono eoimion

Error Handling

* The stack ADT deals with errors by displaying an
error message and terminating the program.

It might be better to provide a way for a program
to recover from errors rather than terminating.

* An alternative is to have the push and pop
functions return a bool value to indicate whether
or not they succeeded.

C PROGRANMMING 78

A Modern Approach stcono eoimion

Error Handling

The C standard library contains a parameterized
macro named assert that can terminate a
program if a specified condition isn’ t satisfied.

We could use calls of this macro as replacements
for the i f statements and calls of terminate
that currently appear in the stack ADT.

C PROGRANMMING 79

A Modern Approach stcono eoimion

Generic ADTs
» Other problems with the stack ADT:

— Changing the type of items stored in a stack requires
modifying the definition of the I tem type.

— A program can’ t create two stacks whose items have
different types.

« We' d like to have a single “generic” stack type.

 There s no completely satisfactory way to create
such a type 1n C.

C PROGRANMMING 80

A Modern Approach stcono eoimion

Generic ADTs

* The most common approach uses void * as the
item type:
vold push (Stack s, wvoid *p);
void *pop (Stack s);
pop returns a null pointer if the stack 1s empty.

» Disadvantages of using void * as the item type:

— Doesn’ t work for data that can’ t be represented in
pointer form, including basic types such as int and
double.

— Error checking 1s no longer possible, because stack
items can be a mixture of pointers of different types.

C PROGRANMMING 81

A Modern Approach stcono eoimion

ADTs in Newer Languages

* These problems are dealt with much more cleanly
in newer C-based languages.

— Name clashes are prevented by defining function names
within a class.

— Exception handling allows functions to “throw’ an
exception when they detect an error condition.

— Some languages provide special features for defining
generic ADTs. (C++ templates are an example.)

C PROGRANMMING 82

A Modern Approach stcono eoimion

