
Chapter 20: Low-Level Programming

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

Chapter 20

Low-Level Programming

Chapter 20: Low-Level Programming

Introduction
•  Previous chapters have described C’s high-level,

machine-independent features.
•  However, some kinds of programs need to

perform operations at the bit level:
–  Systems programs (including compilers and operating

systems)
–  Encryption programs
–  Graphics programs
–  Programs for which fast execution and/or efficient use

of space is critical

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

2

Chapter 20: Low-Level Programming

Bitwise Operators
•  C provides six bitwise operators, which operate on

integer data at the bit level.
•  Two of these operators perform shift operations.
•  The other four perform bitwise complement,

bitwise and, bitwise exclusive or, and bitwise
inclusive or operations.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

3

Chapter 20: Low-Level Programming

Bitwise Shift Operators
•  The bitwise shift operators shift the bits in an

integer to the left or right:
 << left shift
 >> right shift

•  The operands for << and >> may be of any
integer type (including char).

•  The integer promotions are performed on both
operands; the result has the type of the left
operand after promotion.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Chapter 20: Low-Level Programming

Bitwise Shift Operators
•  The value of i << j is the result when the bits in
i are shifted left by j places.
–  For each bit that is “shifted off” the left end of i, a zero

bit enters at the right.

•  The value of i >> j is the result when i is shifted
right by j places.
–  If i is of an unsigned type or if the value of i is

nonnegative, zeros are added at the left as needed.
–  If i is negative, the result is implementation-defined.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

5

Chapter 20: Low-Level Programming

Bitwise Shift Operators
•  Examples illustrating the effect of applying the

shift operators to the number 13:
 unsigned short i, j;

 i = 13;
 /* i is now 13 (binary 0000000000001101) */

 j = i << 2;
 /* j is now 52 (binary 0000000000110100) */

 j = i >> 2;
 /* j is now 3 (binary 0000000000000011) */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

6

Chapter 20: Low-Level Programming

Bitwise Shift Operators
•  To modify a variable by shifting its bits, use the

compound assignment operators <<= and >>=:
 i = 13;
 /* i is now 13 (binary 0000000000001101) */

 i <<= 2;
 /* i is now 52 (binary 0000000000110100) */

 i >>= 2;
 /* i is now 13 (binary 0000000000001101) */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

7

Chapter 20: Low-Level Programming

Bitwise Shift Operators
•  The bitwise shift operators have lower precedence

than the arithmetic operators, which can cause
surprises:

 i << 2 + 1 means i << (2 + 1), not (i << 2) + 1

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

8

Chapter 20: Low-Level Programming

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

•  There are four additional bitwise operators:
 ~ bitwise complement
 & bitwise and
 ^ bitwise exclusive or
 | bitwise inclusive or

•  The ~ operator is unary; the integer promotions
are performed on its operand.

•  The other operators are binary; the usual
arithmetic conversions are performed on their
operands.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

9

Chapter 20: Low-Level Programming

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

•  The ~, &, ^, and | operators perform Boolean
operations on all bits in their operands.

•  The ^ operator produces 0 whenever both
operands have a 1 bit, whereas | produces 1.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Chapter 20: Low-Level Programming

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

•  Examples of the ~, &, ^, and | operators:
 unsigned short i, j, k;

 i = 21;
 /* i is now 21 (binary 0000000000010101) */

 j = 56;
 /* j is now 56 (binary 0000000000111000) */

 k = ~i;
 /* k is now 65514 (binary 1111111111101010) */

 k = i & j;
 /* k is now 16 (binary 0000000000010000) */

 k = i ^ j;
 /* k is now 45 (binary 0000000000101101) */

 k = i | j;
 /* k is now 61 (binary 0000000000111101) */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

11

Chapter 20: Low-Level Programming

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

•  The ~ operator can be used to help make low-level
programs more portable.
–  An integer whose bits are all 1: ~0
–  An integer whose bits are all 1 except for the last five:
~0x1f

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

12

Chapter 20: Low-Level Programming

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

•  Each of the ~, &, ^, and | operators has a different
precedence:

 Highest: ~
 &
 ^
 Lowest: |

•  Examples:
 i & ~j | k means (i & (~j)) | k
 i ^ j & ~k means i ^ (j & (~k))

•  Using parentheses helps avoid confusion.
Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Chapter 20: Low-Level Programming

Bitwise Complement, And,
Exclusive Or, and Inclusive Or

•  The compound assignment operators &=, ^=, and |
= correspond to the bitwise operators &, ^, and |:

 i = 21;
 /* i is now 21 (binary 0000000000010101) */

 j = 56;
 /* j is now 56 (binary 0000000000111000) */

 i &= j;
 /* i is now 16 (binary 0000000000010000) */

 i ^= j;
 /* i is now 40 (binary 0000000000101000) */

 i |= j;
 /* i is now 56 (binary 0000000000111000) */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits
•  The bitwise operators can be used to extract or

modify data stored in a small number of bits.
•  Common single-bit operations:

–  Setting a bit
–  Clearing a bit
–  Testing a bit

•  Assumptions:
–  i is a 16-bit unsigned short variable.
–  The leftmost—or most significant—bit is numbered 15

and the least significant is numbered 0.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits
•  Setting a bit. The easiest way to set bit 4 of i is to

or the value of i with the constant 0x0010:
 i = 0x0000;
 /* i is now 0000000000000000 */

 i |= 0x0010;
 /* i is now 0000000000010000 */

•  If the position of the bit is stored in the variable j,
a shift operator can be used to create the mask:

 i |= 1 << j; /* sets bit j */

•  Example: If j has the value 3, then 1 << j is
0x0008.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits
•  Clearing a bit. Clearing bit 4 of i requires a mask

with a 0 bit in position 4 and 1 bits everywhere
else:

 i = 0x00ff;
 /* i is now 0000000011111111 */

 i &= ~0x0010;
 /* i is now 0000000011101111 */

•  A statement that clears a bit whose position is
stored in a variable:

 i &= ~(1 << j); /* clears bit j */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits
•  Testing a bit. An if statement that tests whether

bit 4 of i is set:
 if (i & 0x0010) … /* tests bit 4 */

•  A statement that tests whether bit j is set:
 if (i & 1 << j) … /* tests bit j */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits
•  Working with bits is easier if they are given

names.
•  Suppose that bits 0, 1, and 2 of a number

correspond to the colors blue, green, and red,
respectively.

•  Names that represent the three bit positions:
 #define BLUE 1
 #define GREEN 2
 #define RED 4

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits
•  Examples of setting, clearing, and testing the
BLUE bit:

 i |= BLUE; /* sets BLUE bit */
 i &= ~BLUE; /* clears BLUE bit */
 if (i & BLUE) … /* tests BLUE bit */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bits
•  It’s also easy to set, clear, or test several bits at

time:
 i |= BLUE | GREEN;
 /* sets BLUE and GREEN bits */

 i &= ~(BLUE | GREEN);
 /* clears BLUE and GREEN bits */

 if (i & (BLUE | GREEN)) …
 /* tests BLUE and GREEN bits */

•  The if statement tests whether either the BLUE
bit or the GREEN bit is set.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bit-Fields

•  Dealing with a group of several consecutive bits (a
bit-field) is slightly more complicated than
working with single bits.

•  Common bit-field operations:
–  Modifying a bit-field
–  Retrieving a bit-field

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bit-Fields

•  Modifying a bit-field. Modifying a bit-field
requires two operations:
–  A bitwise and (to clear the bit-field)
–  A bitwise or (to store new bits in the bit-field)

•  Example:
 i = i & ~0x0070 | 0x0050;
 /* stores 101 in bits 4-6 */

•  The & operator clears bits 4–6 of i; the | operator
then sets bits 6 and 4.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bit-Fields

•  To generalize the example, assume that j contains
the value to be stored in bits 4–6 of i.

•  j will need to be shifted into position before the
bitwise or is performed:

 i = (i & ~0x0070) | (j << 4);
 /* stores j in bits 4-6 */

•  The | operator has lower precedence than & and
<<, so the parentheses can be dropped:

 i = i & ~0x0070 | j << 4;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Chapter 20: Low-Level Programming

Using the Bitwise Operators to Access Bit-Fields

•  Retrieving a bit-field. Fetching a bit-field at the
right end of a number (in the least significant bits)
is easy:

 j = i & 0x0007;
 /* retrieves bits 0-2 */

•  If the bit-field isn’t at the right end of i, we can
first shift the bit-field to the end before extracting
the field using the & operator:

 j = (i >> 4) & 0x0007;
 /* retrieves bits 4-6 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Chapter 20: Low-Level Programming

Program: XOR Encryption
•  One of the simplest ways to encrypt data is to

exclusive-or (XOR) each character with a secret
key.

•  Suppose that the key is the & character.
•  XORing this key with the character z yields the \

character:
 00100110 (ASCII code for &)
 XOR 01111010 (ASCII code for z)
 01011100 (ASCII code for \)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Chapter 20: Low-Level Programming

Program: XOR Encryption
•  Decrypting a message is done by applying the

same algorithm:
 00100110 (ASCII code for &)
 XOR 01011100 (ASCII code for \)
 01111010 (ASCII code for z)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Chapter 20: Low-Level Programming

Program: XOR Encryption
•  The xor.c program encrypts a message by

XORing each character with the & character.
•  The original message can be entered by the user or

read from a file using input redirection.
•  The encrypted message can be viewed on the

screen or saved in a file using output redirection.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Chapter 20: Low-Level Programming

Program: XOR Encryption
•  A sample file named msg:
 Trust not him with your secrets, who, when left
 alone in your room, turns over your papers.
 --Johann Kaspar Lavater (1741-1801)

•  A command that encrypts msg, saving the
encrypted message in newmsg:

 xor <msg >newmsg

•  Contents of newmsg:
 rTSUR HIR NOK QORN _IST UCETCRU, QNI, QNCH JC@R
 GJIHC OH _IST TIIK, RSTHU IPCT _IST VGVCTU.
 --lINGHH mGUVGT jGPGRCT (1741-1801)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

29

Chapter 20: Low-Level Programming

Program: XOR Encryption
•  A command that recovers the original message

and displays it on the screen:
 xor <newmsg

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Chapter 20: Low-Level Programming

Program: XOR Encryption
•  The xor.c program won’t change some

characters, including digits.
•  XORing these characters with & would produce

invisible control characters, which could cause
problems with some operating systems.

•  The program checks whether both the original
character and the new (encrypted) character are
printing characters.

•  If not, the program will write the original
character instead of the new character.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Chapter 20: Low-Level Programming

xor.c
/* Performs XOR encryption */

#include <ctype.h>
#include <stdio.h>

#define KEY '&'

int main(void)
{
 int orig_char, new_char;

 while ((orig_char = getchar()) != EOF) {
 new_char = orig_char ^ KEY;
 if (isprint(orig_char) && isprint(new_char))
 putchar(new_char);
 else
 putchar(orig_char);
 }

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Chapter 20: Low-Level Programming

Bit-Fields in Structures
•  The bit-field techniques discussed previously can

be tricky to use and potentially confusing.
•  Fortunately, C provides an alternative: declaring

structures whose members represent bit-fields.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

Chapter 20: Low-Level Programming

Bit-Fields in Structures
•  Example: How DOS stores the date at which a file

was created or last modified.
•  Since days, months, and years are small numbers,

storing them as normal integers would waste
space.

•  Instead, DOS allocates only 16 bits for a date,
with 5 bits for the day, 4 bits for the month, and 7
bits for the year:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Chapter 20: Low-Level Programming

Bit-Fields in Structures
•  A C structure that uses bit-fields to create an

identical layout:
 struct file_date {
 unsigned int day: 5;
 unsigned int month: 4;
 unsigned int year: 7;
 };

•  A condensed version:
 struct file_date {
 unsigned int day: 5, month: 4, year: 7;
 };

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Chapter 20: Low-Level Programming

Bit-Fields in Structures
•  The type of a bit-field must be either int,
unsigned int, or signed int.

•  Using int is ambiguous; some compilers treat the
field’s high-order bit as a sign bit, but others
don’t.

•  In C99, bit-fields may also have type _Bool.
•  C99 compilers may allow additional bit-field

types.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Chapter 20: Low-Level Programming

Bit-Fields in Structures
•  A bit-field can be used in the same way as any

other member of a structure:
 struct file_date fd;

 fd.day = 28;
 fd.month = 12;
 fd.year = 8; /* represents 1988 */

•  Appearance of the fd variable after these
assignments:

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Chapter 20: Low-Level Programming

Bit-Fields in Structures
•  The address operator (&) can’t be applied to a bit-

field.
•  Because of this rule, functions such as scanf

can’t store data directly in a bit-field:
 scanf("%d", &fd.day); /*** WRONG ***/

•  We can still use scanf to read input into an
ordinary variable and then assign it to fd.day.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Chapter 20: Low-Level Programming

How Bit-Fields Are Stored
•  The C standard allows the compiler considerable

latitude in choosing how it stores bit-fields.
•  The rules for handling bit-fields depend on the

notion of “storage units.”
•  The size of a storage unit is implementation-

defined.
–  Typical values are 8 bits, 16 bits, and 32 bits.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Chapter 20: Low-Level Programming

How Bit-Fields Are Stored
•  The compiler packs bit-fields one by one into a

storage unit, with no gaps between the fields, until
there’s not enough room for the next field.

•  At that point, some compilers skip to the
beginning of the next storage unit, while others
split the bit-field across the storage units.

•  The order in which bit-fields are allocated (left to
right or right to left) is also implementation-
defined.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

Chapter 20: Low-Level Programming

How Bit-Fields Are Stored
•  Assumptions in the file_date example:

–  Storage units are 16 bits long.
–  Bit-fields are allocated from right to left (the first bit-

field occupies the low-order bits).

•  An 8-bit storage unit is also acceptable if the
compiler splits the month field across two storage
units.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Chapter 20: Low-Level Programming

How Bit-Fields Are Stored
•  The name of a bit-field can be omitted.
•  Unnamed bit-fields are useful as “padding” to

ensure that other bit-fields are properly positioned.
•  A structure that stores the time associated with a

DOS file:
 struct file_time {
 unsigned int seconds: 5;
 unsigned int minutes: 6;
 unsigned int hours: 5;
 };

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Chapter 20: Low-Level Programming

How Bit-Fields Are Stored
•  The same structure with the name of the
seconds field omitted:

 struct file_time {
 unsigned int : 5; /* not used */
 unsigned int minutes: 6;
 unsigned int hours: 5;
 };

•  The remaining bit-fields will be aligned as if
seconds were still present.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Chapter 20: Low-Level Programming

How Bit-Fields Are Stored
•  The length of an unnamed bit-field can be 0:
 struct s {
 unsigned int a: 4;
 unsigned int : 0; /* 0-length bit-field */
 unsigned int b: 8;
 };

•  A 0-length bit-field tells the compiler to align the
following bit-field at the beginning of a storage unit.
–  If storage units are 8 bits long, the compiler will allocate 4 bits

for a, skip 4 bits to the next storage unit, and then allocate 8 bits
for b.

–  If storage units are 16 bits long, the compiler will allocate 4 bits
for a, skip 12 bits, and then allocate 8 bits for b.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Chapter 20: Low-Level Programming

Other Low-Level Techniques
•  Some features covered in previous chapters are

used often in low-level programming.
•  Examples:

–  Defining types that represent units of storage
–  Using unions to bypass normal type-checking
–  Using pointers as addresses

•  The volatile type qualifier was mentioned in
Chapter 18 but not discussed because of its low-
level nature.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

Chapter 20: Low-Level Programming

Defining Machine-Dependent Types
•  The char type occupies one byte, so characters

can be treated as bytes.
•  It’s a good idea to define a BYTE type:
 typedef unsigned char BYTE;

•  Depending on the machine, additional types may
be needed.

•  A useful type for the x86 platform:
 typedef unsigned short WORD;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

46

Chapter 20: Low-Level Programming

Using Unions to Provide Multiple Views of Data

•  Unions can be used in a portable way, as shown in
Chapter 16.

•  However, they’re often used in C for an entirely
different purpose: viewing a block of memory in
two or more different ways.

•  Consider the file_date structure described
earlier.

•  A file_date structure fits into two bytes, so
any two-byte value can be thought of as a
file_date structure.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Chapter 20: Low-Level Programming

Using Unions to Provide Multiple Views of Data

•  In particular, an unsigned short value can be
viewed as a file_date structure.

•  A union that can be used to convert a short integer
to a file date or vice versa:

 union int_date {
 unsigned short i;
 struct file_date fd;
 };

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Chapter 20: Low-Level Programming

Using Unions to Provide Multiple Views of Data

•  A function that prints an unsigned short
argument as a file date:

 void print_date(unsigned short n)
 {
 union int_date u;

 u.i = n;
 printf("%d/%d/%d\n", u.fd.month,
 u.fd.day, u.fd.year + 1980);
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Chapter 20: Low-Level Programming

Using Unions to Provide Multiple Views of Data

•  Using unions to allow multiple views of data is
especially useful when working with registers,
which are often divided into smaller units.

•  x86 processors have 16-bit registers named AX,
BX, CX, and DX.

•  Each register can be treated as two 8-bit registers.
–  AX is divided into registers named AH and AL.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Chapter 20: Low-Level Programming

Using Unions to Provide Multiple Views of Data

•  Writing low-level applications for x86-based
computers may require variables that represent
AX, BX, CX, and DX.

•  The goal is to access both the 16- and 8-bit
registers, taking their relationships into account.
–  A change to AX affects both AH and AL; changing AH

or AL modifies AX.

•  The solution is to set up two structures:
–  The members of one correspond to the 16-bit registers.
–  The members of the other match the 8-bit registers.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

Chapter 20: Low-Level Programming

Using Unions to Provide Multiple Views of Data

•  A union that encloses the two structures:
 union {
 struct {
 WORD ax, bx, cx, dx;
 } word;
 struct {
 BYTE al, ah, bl, bh, cl, ch, dl, dh;
 } byte;
 } regs;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

Chapter 20: Low-Level Programming

Using Unions to Provide Multiple Views of Data

•  The members of the word structure will be
overlaid with the members of the byte structure.
–  ax will occupy the same memory as al and ah.

•  An example showing how the regs union might
be used:

 regs.byte.ah = 0x12;
 regs.byte.al = 0x34;
 printf("AX: %hx\n", regs.word.ax);

•  Output:
 AX: 1234

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Chapter 20: Low-Level Programming

Using Unions to Provide Multiple Views of Data

•  Note that the byte structure lists al before ah.
•  When a data item consists of more than one byte,

there are two logical ways to store it in memory:
–  Big-endian: Bytes are stored in “natural” order (the

leftmost byte comes first).
–  Little-endian: Bytes are stored in reverse order (the

leftmost byte comes last).

•  x86 processors use little-endian order.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Chapter 20: Low-Level Programming

Using Unions to Provide Multiple Views of Data

•  We don’t normally need to worry about byte
ordering.

•  However, programs that deal with memory at a
low level must be aware of the order in which
bytes are stored.

•  It’s also relevant when working with files that
contain non-character data.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

55

Chapter 20: Low-Level Programming

Using Pointers as Addresses
•  An address often has the same number of bits as

an integer (or long integer).
•  Creating a pointer that represents a specific

address is done by casting an integer to a pointer:
 BYTE *p;

 p = (BYTE *) 0x1000;
 /* p contains address 0x1000 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

Chapter 20: Low-Level Programming

Program: Viewing Memory Locations
•  The viewmemory.c program allows the user to

view segments of computer memory.
•  The program first displays the address of its own
main function as well as the address of one of its
variables.

•  The program next prompts the user to enter an
address (as a hexadecimal integer) plus the
number of bytes to view.

•  The program then displays a block of bytes of the
chosen length, starting at the specified address.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

57

Chapter 20: Low-Level Programming

Program: Viewing Memory Locations
•  Bytes are displayed in groups of 10 (except for the

last group).
•  Bytes are shown both as hexadecimal numbers

and as characters.
•  Only printing characters are displayed; other

characters are shown as periods.
•  The program assumes that int values and

addresses are stored using 32 bits.
•  Addresses are displayed in hexadecimal.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

Chapter 20: Low-Level Programming

viewmemory.c
/* Allows the user to view regions of computer memory */

#include <ctype.h>
#include <stdio.h>

typedef unsigned char BYTE;

int main(void)
{
 unsigned int addr;
 int i, n;
 BYTE *ptr;

 printf("Address of main function: %x\n", (unsigned int) main);
 printf("Address of addr variable: %x\n", (unsigned int)

&addr);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

Chapter 20: Low-Level Programming

 printf("\nEnter a (hex) address: ");
 scanf("%x", &addr);
 printf("Enter number of bytes to view: ");
 scanf("%d", &n);

 printf("\n");
 printf(" Address Bytes Characters

\n");
 printf(" ------- ----------------------------- ----------

\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

60

Chapter 20: Low-Level Programming

 ptr = (BYTE *) addr;
 for (; n > 0; n -= 10) {
 printf("%8X ", (unsigned int) ptr);
 for (i = 0; i < 10 && i < n; i++)
 printf("%.2X ", *(ptr + i));
 for (; i < 10; i++)
 printf(" ");
 printf(" ");
 for (i = 0; i < 10 && i < n; i++) {
 BYTE ch = *(ptr + i);
 if (!isprint(ch))
 ch = '.';
 printf("%c", ch);
 }
 printf("\n");
 ptr += 10;
 }

 return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

61

Chapter 20: Low-Level Programming

Program: Viewing Memory Locations
•  Sample output using GCC on an x86 system running Linux:
 Address of main function: 804847c
 Address of addr variable: bff41154

 Enter a (hex) address: 8048000
 Enter number of bytes to view: 40

 Address Bytes Characters
 ------- ----------------------------- ----------
 8048000 7F 45 4C 46 01 01 01 00 00 00 .ELF......
 804800A 00 00 00 00 00 00 02 00 03 00
 8048014 01 00 00 00 C0 83 04 08 34 00 4.
 804801E 00 00 C0 0A 00 00 00 00 00 00

•  The 7F byte followed by the letters E, L, and F identify the
format (ELF) in which the executable file was stored.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

62

Chapter 20: Low-Level Programming

Program: Viewing Memory Locations
•  A sample that displays bytes starting at the address of addr:
 Address of main function: 804847c
 Address of addr variable: bfec5484

 Enter a (hex) address: bfec5484
 Enter number of bytes to view: 64

 Address Bytes Characters
 ------- ----------------------------- ----------
 BFEC5484 84 54 EC BF B0 54 EC BF F4 6F .T...T...o
 BFEC548E 68 00 34 55 EC BF C0 54 EC BF h.4U...T..
 BFEC5498 08 55 EC BF E3 3D 57 00 00 00 .U...=W...
 BFEC54A2 00 00 A0 BC 55 00 08 55 EC BF U..U..
 BFEC54AC E3 3D 57 00 01 00 00 00 34 55 .=W.....4U
 BFEC54B6 EC BF 3C 55 EC BF 56 11 55 00 ..<U..V.U.
 BFEC54C0 F4 6F 68 00 .oh.

•  When reversed, the first four bytes form the number
BFEC5484, the address entered by the user.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

63

Chapter 20: Low-Level Programming

The volatile Type Qualifier
•  On some computers, certain memory locations are

“volatile.”
•  The value stored at such a location can change as a

program is running, even though the program
itself isn’t storing new values there.

•  For example, some memory locations might hold
data coming directly from input devices.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

64

Chapter 20: Low-Level Programming

The volatile Type Qualifier
•  The volatile type qualifier allows us to inform

the compiler if any of the data used in a program
is volatile.

•  volatile typically appears in the declaration of
a pointer variable that will point to a volatile
memory location:

 volatile BYTE *p;
 /* p will point to a volatile byte */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

65

Chapter 20: Low-Level Programming

The volatile Type Qualifier
•  Suppose that p points to a memory location that

contains the most recent character typed at the
user’s keyboard.

•  A loop that obtains characters from the keyboard
and stores them in a buffer array:

 while (buffer not full) {
 wait for input;
 buffer[i] = *p;
 if (buffer[i++] == '\n')
 break;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

66

Chapter 20: Low-Level Programming

The volatile Type Qualifier
•  A sophisticated compiler might notice that this

loop changes neither p nor *p.
•  It could optimize the program by altering it so that
*p is fetched just once:

 store *p in a register;
 while (buffer not full) {
 wait for input;
 buffer[i] = value stored in register;
 if (buffer[i++] == '\n')
 break;
 }

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

67

Chapter 20: Low-Level Programming

The volatile Type Qualifier
•  The optimized program will fill the buffer with

many copies of the same character.
•  Declaring that p points to volatile data avoids this

problem by telling the compiler that *p must be
fetched from memory each time it’s needed.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

68

