
+

William Stallings
Computer Organization
and Architecture
10th Edition

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

+ Chapter 13
Instruction Sets: Addressing
Modes and Formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Addressing Modes

Immediate

Direct

Indirect

Register

Register indirect

Displacement

Stack

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(b) Direct

Memory

Instruction

A A

Operand

(a) Immediate

Instruction

Operand

Registers

(d) Register

Instruction

R R

(c) Indirect

Memory

Instruction

Registers

(f) Displacement

Memory

Instruction

AR

Registers

(e) Register Indirect

Memory

Instruction

Top of Stack

Register

(g) Stack

Figure 13.1 Addressing Modes

Implicit

Instruction

Operand

Operand Operand

Operand

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mode Algorithm Principal Advantage Principal Disadvantage
Immediate Operand = A No memory reference Limited operand magnitude
Direct EA = A Simple Limited address space
Indirect EA = (A) Large address space Multiple memory references
Register EA = R No memory reference Limited address space
Register indirect EA = (R) Large address space Extra memory reference
Displacement EA = A + (R) Flexibility Complexity
Stack EA = top of stack No memory reference Limited applicability

Table 13.1
Basic Addressing Modes

+ Immediate Addressing

n  Simplest form of addressing

n  Operand = A

n  This mode can be used to define and use constants or set initial
values of variables
n  Typically the number will be stored in twos complement form
n  The leftmost bit of the operand field is used as a sign bit

n  Advantage:
n  No memory reference other than the instruction fetch is required to

obtain the operand, thus saving one memory or cache cycle in the
instruction cycle

n  Disadvantage:
n  The size of the number is restricted to the size of the address field, which,

in most instruction sets, is small compared with the word length

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Direct Addressing

Address field
contains the

effective address of
the operand

Effective address
(EA) = address field

(A)

Was common in
earlier generations

of computers

Requires only one
memory reference

and no special
calculation

Limitation is that it
provides only a
limited address

space

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Indirect Addressing

n  Reference to the address of a word in memory which contains a
full-length address of the operand

n  EA = (A)
n  Parentheses are to be interpreted as meaning contents of

n  Advantage:
n  For a word length of N an address space of 2N is now available

n  Disadvantage:
n  Instruction execution requires two memory references to fetch the operand

n  One to get its address and a second to get its value

n  A rarely used variant of indirect addressing is multilevel or cascaded
indirect addressing
n  EA = (. . . (A) . . .)
n  Disadvantage is that three or more memory references could be required

to fetch an operand

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Register Addressing

Address field
refers to a

register rather
than a main

memory address

EA = R

Advantages:
• Only a small address

field is needed in
the instruction

• No time-consuming
memory references
are required

Disadvantage:
•  The address space is

very limited

+
Register Indirect Addressing

n  Analogous to indirect addressing
n  The only difference is whether the address field refers to a

memory location or a register

n  EA = (R)

n  Address space limitation of the address field is overcome by
having that field refer to a word-length location containing an
address

n  Uses one less memory reference than indirect addressing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Displacement Addressing

n  Combines the capabilities of direct addressing and register
indirect addressing

n  EA = A + (R)

n  Requires that the instruction have two address fields, at least one
of which is explicit
n  The value contained in one address field (value = A) is used directly
n  The other address field refers to a register whose contents are added

to A to produce the effective address

n  Most common uses:
n  Relative addressing
n  Base-register addressing
n  Indexing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Relative Addressing

The implicitly referenced register is the program counter (PC)

•  The next instruction address is added to the address field to produce the EA
•  Typically the address field is treated as a twos complement number for this

operation
•  Thus the effective address is a displacement relative to the address of the

instruction

Exploits the concept of locality

Saves address bits in the instruction if most memory references
are relatively near to the instruction being executed

+
Base-Register Addressing

n  The referenced register contains a main memory address and
the address field contains a displacement from that address

n  The register reference may be explicit or implicit

n  Exploits the locality of memory references

n  Convenient means of implementing segmentation

n  In some implementations a single segment base register is
employed and is used implicitly

n  In others the programmer may choose a register to hold the
base address of a segment and the instruction must reference it
explicitly

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Indexing
n  The address field references a main memory address and the referenced

register contains a positive displacement from that address

n  The method of calculating the EA is the same as for base-register addressing

n  An important use is to provide an efficient mechanism for performing
iterative operations

n  Autoindexing
n  Automatically increment or decrement the index register after each reference to it
n  EA = A + (R)
n  (R) ç (R) + 1

n  Postindexing
n  Indexing is performed after the indirection
n  EA = (A) + (R)

n  Preindexing
n  Indexing is performed before the indirection
n  EA = (A + (R))

+
Stack Addressing

n  A stack is a linear array of locations
n  Sometimes referred to as a pushdown list or last-in-first-out queue

n  A stack is a reserved block of locations
n  Items are appended to the top of the stack so that the block is partially filled

n  Associated with the stack is a pointer whose value is the address of the top of
the stack
n  The stack pointer is maintained in a register
n  Thus references to stack locations in memory are in fact register indirect addresses

n  Is a form of implied addressing

n  The machine instructions need not include a memory
reference but implicitly operate on the top of the stack

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Selector
Selector

Selector
Selector

Selector
Selector

SS
GS

FS
ES

DS
CS

Segment Registers

Access Rights

Limit

Base Address

SS
Access Rights

Limit

Base Address

GS
Access Rights

Limit

Base Address

FS
Access Rights

Limit

Base Address

ES
Access Rights

Limit

Base Address

DS
Access Rights

Limit

Base Address

CS

Descriptor Registers

Base Register

Index Register

Scale
1, 2, 4, or 8

Displacement
(in instruction;
0, 8, or 32 bits)

Li
m

it

u

+

+

Effective
Address

Linear
Address

Segment
Base

Address

Figure 13.2 x86 Addressing Mode Calculation

 LA = linear address
 (X) = contents of X
 SR = segment register
 PC = program counter
 A = contents of an address field in the instruction
 R = register
 B = base register
 I = index register

S = scaling factor

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mode Algorithm
Immediate Operand = A
Register Operand LA = R
Displacement LA = (SR) + A
Base LA = (SR) + (B)
Base with Displacement LA = (SR) + (B) + A
Scaled Index with Displacement LA = (SR) + (I) × S + A

Base with Index and Displacement LA = (SR) + (B) + (I) + A
Base with Scaled Index and Displacement LA = (SR) + (I) × S + (B) + A

Relative LA = (PC) + A

Table 13.2
x86 Addressing Modes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0x200 0x200

0x20C0x20C 0xC
r1

r1
Original

base register

(b) Preindex

(c) Postindex

Destination

register

for STR

Updated

base register

0x5

0x5
r0

Offset

STRB r0, [r1, #12]!

0x200 0x200

0x20C0x20C 0xC
r1

r1
Original

base register

Figure 13.3 ARM Indexing Methods

Destination

register

for STR

Updated

base register

0x5

0x5

r0

Offset

STRB r0, [r1], #12

0x200 0x200

0x20C0xC

r1
Original

base register

(a) Offset

Destination

register

for STR

0x5

0x5
r0

Offset

STRB r0, [r1, #12]

+ ARM Data Processing Instruction Addressing
and Branch Instructions

n  Data processing instructions

n  Use either register addressing or a mixture of register and
immediate addressing

n  For register addressing the value in one of the register operands
may be scaled using one of the five shift operators

n  Branch instructions

n  The only form of addressing for branch instructions is immediate

n  Instruction contains 24 bit value

n  Shifted 2 bits left so that the address is on a word boundary

n  Effective range ± 32MB from from the program counter

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 13.4 ARM Load/Store Multiple Addressing

0x20C

0x210
0x214

0x20C(r0)
(r1)
(r4)

(r0)
(r1)
(r4)

(r0)
(r1)
(r4)

(r0)
(r1)
(r4) 0x208

0x204
0x200

0x218
r10

Base register

Increment
after (IA)

Increment
before (IB)

Decrement
after (DA)

Decrement
before (DB)

LDMxx r10, {r0, r1, r4}
STMxx r10, {r0, r1, r4}

Instruction Formats

Define the
layout of the

bits of an
instruction, in

terms of its
constituent

fields

Must include
an opcode

and, implicitly
or explicitly,
indicate the
addressing

mode for each
operand

For most
instruction

sets more than
one

instruction
format is used

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Instruction Length

n  Most basic design issue

n  Affects, and is affected by:
n  Memory size

n  Memory organization

n  Bus structure

n  Processor complexity

n  Processor speed

n  Should be equal to the memory-transfer length or one should
be a multiple of the other

n  Should be a multiple of the character length, which is usually
8 bits, and of the length of fixed-point numbers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Allocation of Bits

Number of
addressing

modes

Number of
operands

Register
versus

memory

Number of
register sets

Address
range

Address
granularity

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory Reference Instructions
Opcode D/I Z/C Displacement

0 2 3 4 5 11

Input/Output Instructions
1 1 0 Device Opcode
0 2 3 8 9 11

Register Reference Instructions

Group 1 Microinstructions
1 1 1 0 CLA CLL CMA CML RAR RAL BSW IAC
0 1 2 3 4 5 6 7 8 9 10 11

Group 2 Microinstructions

1 1 1 1 CLA SMA SZA SNL RSS OSR HLT 0
0 1 2 3 4 5 6 7 8 9 10 11

Group 3 Microinstructions

1 1 1 1 CLA MQA 0 MQL 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11

D/I = Direct/Indirect address
Z/C = Page 0 or Current page
CLA = Clear Accumulator
CLL = Clear Link
CMA = CoMplement Accumulator
CML = CoMplement Link
RAR = Rotate Accumultator Right
RAL = Rotate Accumulator Left
BSW = Byte SWap

IAC = Increment ACcumulator
SMA = Skip on Minus Accumulator
SZA = Skip on Zero Accumulator
SNL = Skip on Nonzero Link
RSS = Reverse Skip Sense
OSR = Or with Switch Register
HLT = HaLT
MQA = Multiplier Quotient into Accumulator
MQL = Multiplier Quotient Load

Figure 13.5 PDP-8 Instruction Formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Opcode Register I Index

Register Memory Address

0 8 9 12 14 17 18 35

I = indirect bit

Figure 13.6 PDP-10 Instruction Format

+
Variable-Length Instructions

n  Variations can be provided efficiently and compactly

n  Increases the complexity of the processor

n  Does not remove the desirability of making all of the
instruction lengths integrally related to word length
n  Because the processor does not know the length of the next

instruction to be fetched a typical strategy is to fetch a number of
bytes or words equal to at least the longest possible instruction

n  Sometimes multiple instructions are fetched

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Opcode Opcode Offet1 2 3

4 5 6

7

10

11

12

13

Numbers below fields indicate bit length

Source and Destination each contain a 3-bit addressing mode field and a 3-bit register number

FP indicates one of four floating-point registers

R indicates one of the general-purpose registers

CC is the condition code field

8

9

RSource SourceDestinationOpcode

4

Opcode

8

Opcode

10

Opcode

12

CC

4

FP

2

Destination

6

Destination

6

Opcode

13

Opcode

16

Opcode

4

Source

6

Destination

6

Memory Address

16

R

3

Opcode

7

Source

6

Source

6

Destination

6

Destination

6

Memory Address

16

Memory Address

16

Memory Address

16

Memory Address 1

16

Memory Address 2

16

R

3

Opcode

8

FP

2

Opcode

10

Opcode

4

Source

6

7 8 836 66

Figure 13.7 Instruction Formats for the PDP-11

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Opcode for RSB

Hexadecimal
Format

Assembler Notation
and Description

Explanation

0
8 bits

5

D 4
5 9

B 0
C 4
6 4
0 1
A B
1 9

C 1
0 5
5 0
4 2
D F

RSB
Return from subroutine

Opcode for CLRL

Register R9

CLRL R9

Clear register R9

Opcode for MOVW
Word displacement mode,
Register R4

Byte displacement mode,
Register R11
25 in hexadecimal

356 in hexadecimal

MOVW 356(R4), 25(R11)

Move a word from address
that is 356 plus contents
of R4 to address that is
25 plus contents of R11

Opcode for ADDL3

Short literal 5

Register mode R0

Index prefix R2
Indirect word relative
(displacement from PC)

ADDL3 #5, R0, @A[R2]

Add 5 to a 32-bit integer in
R0 and store the result in
location whose address is
sum of A and 4 times the
contents of R2

Amount of displacement from
PC relative to location A

Figure 13.8 Examples of VAX Instructions

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 13.9 x86 Instruction Format

Mod

0, 1, 2, 3, or 4 bytes 0, 1, 2, or 4 bytes 0, 1, 2, or 4 bytes1, 2, or 3 bytes

0 or 1

bytes

0 or 1

bytes

0 or 1

bytes

0 or 1

bytes

0 or 1

bytes

0 or 1

bytes

Instruction prefixes Opcode

01234567 01234567

ModR/m SIB Displacement Immediate

Instruction

prefix

Segment

override

Operand

size

override

Address

size

override

Reg/Opcode R/M Scale Index Base

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0 0 0S Rn RmRd shift amount shift

0shift amount shift

0cond opcode
data processing
immediate shift

0 1 S Rn Rd rotate immediate0cond opcode
data processing

immediate

1 0 LWBUP Rn Rd immediate0cond
load/store

immediate offset

1 1 LWBUP Rn Rd0cond
load/store

register offset

0 0 10S Rn Rm

Rm

register list0 0 LWSUP Rn1cond
load/store

multiple

24-bit offset0 1 L1cond
branch/branch

with link

S = For data processing instructions, signifies that
 the instruction updates the condition codes
S = For load/store multiple instructions, signifies
 whether instruction execution is restricted to
 supervisor mode
P, U, W = bits that distinguish among
 different types of addressing_mode

B = Distinguishes between an unsigned
 byte (B==1) and a word (B==0) access
L = For load/store instructions, distinguishes
 between a Load (L==1) and a Store (L==0)
L = For branch instructions, determines whether
 a return address is stored in the link register

Rd Rs shift0cond opcode
data processing

register shift

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 13.10 ARM Instruction Formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000

ror #0 - range 0 through 0x000000FF - step 0x00000001

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 0

ror #8 - range 0 through 0xFF000000 - step 0x01000000

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000

ror #30 - range 0 through 0x000003FC - step 0x00000004

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 13.11 Examples of Use of ARM Immediate Constants

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0 1 1 0 00 0 10 00 10 1 10 11 11 0 0 0 0 0 010 0 0 1 1

ADD r3, #19

ADDS r3, r3, #19

data processing
immediate format

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 1 1 00 1 10 0 0 1 00 1 10

add/subract/compare/move
immediate format

always
condition code

major opcode
denoting format 3
move/compare/add/sub
with immediate value

minor opcode
denoting ADD
instruction destination and

source register immediate
value

update
condition
flags

zero
rotation

0 1 Rd/Rn
op

code immediate0

012345678910111214 1315

Figure 13.12 Expanding a Thumb ADD Instruction into its ARM Equivalent

0 1 S Rn Rd rotate immediate0cond opcode

+
Thumb-2 Instruction Set

n  The only instruction set available on the Cortex-M microcontroller
products

n  Is a major enhancement to the Thumb instruction set architecture (ISA)
n  Introduces 32-bit instructions that can be intermixed freely with the older 16-

bit Thumb instructions
n  Most 32-bit Thumb instructions are unconditional, whereas almost all ARM

instructions can be conditional
n  Introduces a new If-Then (IT) instruction that delivers much of the functionality

of the condition field in ARM instructions

n  Delivers overall code density comparable with Thumb, together with the
performance levels associated with the ARM ISA

n  Before Thumb-2 developers had to choose between Thumb for size and
ARM for performance

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 13.13 Thumb-2 Encoding

thm hw1 hw2 thm thmhw1 hw2

i+2 i+6i+4 i+8 i+10 Instruction flowi

Halfword 1 [15:13] Halfword1 [12:11] Length Functionality

Not 111 xx 16 bits (1 halfword) 16-bit Thumb instruction

111 00 16 bits (1 halfword) 16-bit Thumb unconditional
branch instruction

111 Not 00 32 bits (2 halfwords) 32-bit Thumb-2 instruction

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Address Contents Address Contents

101 0010 0010 101 2201 101 2201
102 0001 0010 102 1202 102 1202
103 0001 0010 103 1203 103 1203
104 0011 0010 104 3204 104 3204

201 0000 0000 201 0002 201 0002
202 0000 0000 202 0003 202 0003
203 0000 0000 203 0004 203 0004
204 0000 0000 204 0000 204 0000

 (a) Binary program (b) Hexadecimal program

Address Instruction Label Operation Operand
101 LDA 201 FORMUL LDA I
102 ADD 202 ADD J
103 ADD 203 ADD K
104 STA 204 STA N

201 DAT 2 I DATA 2
202 DAT 3 J DATA 3
203 DAT 4 K DATA 4
204 DAT 0 N DATA 0

 (c) Symbolic program (d) Assembly program

Figure 13.14 Computation of the Formula N = I + J+ K

+ Summary

n  Addressing modes

n  Immediate addressing

n  Direct addressing

n  Indirect addressing

n  Register addressing

n  Register indirect addressing

n  Displacement addressing

n  Stack addressing

n  Assembly language

n  x86 addressing modes

n  ARM addressing modes

n  Instruction formats

n  Instruction length

n  Allocation of bits

n  Variable-length instructions

n  X86 instruction formats

n  ARM instruction formats

Chapter 13

Instruction Sets:
Addressing Modes

and Formats

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

